
Chapter 11

Portable Executable
File Format

IN THIS CHAPTER

+ Understanding the structure of a PE file

+ Talking in terms of RVAs

+ Detailing the PE format

+ The importance of indices in the data directory

+ How the loader interprets a PE file

MICROSOFT INTRODUCED A NEW executable file format with Windows NT. This for-
mat is called the Portable Executable (PE) format because it is supposed to be
portable across all 32-bit operating systems by Microsoft. The same PE format exe-
cutable can be executed on any version of Windows NT, Windows 95, and Win32s.
Also, the same format is used for executables for Windows NT running on proces-
sors other than Intel x86, such as MIPS, Alpha, and Power PC. The 32-bit DLLs and
Windows NT device drivers also follow the same PE format.

It is helpful to understand the PE file format because PE files are almost identi-
cal on disk and in RAM. Learning about the PE format is also helpful for under-
standing many operating system concepts. For example, how operating system
loader works to support dynamic linking of DLL functions, the data structures in-
volved in dynamic linking such as import table, export table, and so on.

The PE format is not really undocumented. The WINNT.H file has several struc-
ture definitions representing the PE format. The Microsoft Developer's Network
(MSDN) CD-ROMs contain several descriptions of the PE format. However, these
descriptions are in bits and pieces, and are by no means complete. In this chapter,
we try to give you a comprehensive picture of the PE format.

Microsoft also provides a DLL with the SDK that has utility functions for inter-
preting PE files. We also discuss these functions and correlate them with other in-
formation about the PE format.

223

224 Part 11: Undocumented Windows NT

Overview of a PE File
In this section, we discuss the overall structure of a PE file. In the sections that fol-
low, we go into detail about the PE format. A PE file comprises various sections.
Because Microsoft's 32-bit operating systems follow the flat memory model, an ex-
ecutable no longer contains segments. Still, different parts of an executable, such as
code and data, have different characteristics. These different parts of an executable
are stored as different sections. Thus, a PE file is a concatenation of data stored
in sections.

A few sections are always present in a PE file generated by the Microsoft linker.
Other linkers may generate similar sections with different names. A PE file generated
with the Microsoft linker has a .text section that contains the code bytes concate-
nated from all the object files. As for the data, it can be classified into different cat-
egories. The .data section contains all the initialized global and static data, while the
.bss section contains the uninitialized data. The read-only data, such as string liter-
als and constants, is stored in the .rdata section. This section also contains some
other read-only structures, such as the debug directory, the Thread Local Storage
(TLS) directory, and so on, which we explain later in this chapter. The .edata section
contains information about the functions exported from a DLL, while the .idata sec-
tion stores information about the functions imported by an executable or a DLL. The
.rsrc section contains various resources, such as menus and dialog boxes. The .reloc
section stores the information required for relocating the image while loading.

The names of the sections do not have any significance. As mentioned earlier,
different linkers may use different names for the sections. Programmers can also
create new sections of their own. The #pragma code_seg and #pragma data_seg
macros can be used to create new sections while working with Microsoft compiler.
The operating system loader locates the required piece of information from the data
directories present in the file headers. Shortly, we will present an overview of file
headers and then look at them in more detail.

Structure of a PE File
Apart from the sections consisting of the actual data, a PE file contains various head-
ers that describe the sections and the important information present in the sections.

If you look at the hex dump of a PE file, the first 2 bytes might look familiar.
Aren't they M and Z? Yes, a PE file starts with the DOS executable header. It is fol-
lowed by a small program that prints an error message saying that the program
cannot be run in DOS mode. It's the same idea that was used in 16-bit Windows ex-
ecutables. This program code is executed, if the PE image is run under DOS.

After the DOS header and the DOS executable stub comes the PE header. A field
in the DOS header points to this new header. The PE header starts with the 4-byte
signature "PE" followed by two nulls. The PE format is based on the Common Object

Chapter 11: Portable Executable Eile Format 225

File Format (COFF) used by Unix. The PE signature is followed by the object file
header borrowed from COFF. This header is present also for the object files produced
by Microsoft's 32-bit compilers. This header contains some general information
about the file, such as the target machine ID, the number of sections in the file, and
so forth. The COFF style header is followed by the optional header. This header is op-
tional in the sense that it is not required for the object files. As far as executables
and DLLs are concerned, this header is mandatory. The optional header has two
parts. The first part is inherited from COFF and can be found in all COFF files. The
second part is an NT-specific extension of COFF. Apart from other NT-specific infor-
mation, such as the subsystem type, this part also contains the data directory. The
data directory is an array in which each entry points to some important piece of in-
formation. One of the entries in the data directory points to the import table of the
executable or DLL, another entry points to the export table of the DLL, and so on.

We will look at the detailed formats of the different pieces of information
later in this chapter.

The data directory is followed by the section table. The section table is an array of
section headers. A section header summarizes the important information about the
respective section. Finally, the section table is followed by the sections themselves.

We hope that this gives you an overview of the organization of a PE file. Before
diving into the details of the PE format, let's discuss a concept that is vital in inter-
preting a PE file.

Relative Virtual Address
All the offsets within a PE file are denoted as Relative Virtual Addresses (RVAs). An
RVA is an offset from the base address at which an executable is loaded in memory.
This is not the same as the offset within the file because of the section alignment
requirements. The PE header specifies the section alignment requirements for an
executable image. A section has to be loaded at a memory address that is a multi-
ple of the section alignment. The section alignment has to be a multiple of the page
size. This is because different sections have different page attribute requirements;
for example, the .data section needs read-write permissions, while the .text section
needs read-execute permissions. Hence, a page cannot span section boundaries.

Because the PE format always talks in terms of RVAs, it's difficult to find the
location of the required information within a file. A common practice while
accessing a PE file is to map the file in memory using the Win32 memory mapping
API. It's a bit complicated to calculate the address for the given RVA in this

226 Part 11: Undocumented Windows NT

memory-mapped file. You first need to find out the section in which the given RVA
lies. You can accomplish this by iterating through the section table. Each section
header stores the starting RVA for the section and the size of the section. A section
is guaranteed to be contiguously loaded in memory. Hence, the offset from the start
of the section for a particular piece of data is bound to be the same whether the file
is memory mapped or loaded by the operating system loader for execution. Hence,
to find out the address in a memory-mapped file, you simply need to add this off-
set to the base address of the section in the memory-mapped file. Now, this base ad-
dress can be calculated from within the file offset of the section, which is also
stored in the respective section header. Quite an easy procedure, isn't it?

ImageRvaToVaQ
Don't worry, there is an easier way out. Microsoft comes to our rescue here with
IMAGEHLP.DLL. This DLL exports a function that computes the address in the
memory-mapped file, given an RVA.

L P V O I D I m a g e R v a T o V a (
PIMAGE_NT_HEADERS NtHeaders ,
LPVOID B a s e ,
DWORD R v a ,
PIMAGE_SECTION_HEADER * L a s t R v a S e c t i o n
); " '

PARAMETERS

NtHeaders

Base

Rva
LastRvaSection

>,

* f

Pointer to an IMAGE_NT_HEADERS structure. This structure
represents the PE header and is defined in the WINNT.h file. A
pointer to the PE header within a PE file can be obtained
using the ImageNtHeaderQ function exported by < •
IMAGEHLP.DLL.

Base address where the PE file is mapped into memory using
the Win32 API for the memory mapping of files.

Given relative virtual address.

Last RVA section. This is an optional parameter, and you can
pass NULL. When specified, it points to a variable that
contains the last section value used for the specified image to
translate an RVA to a VA. This is used for optimizing the
section search, in case the given RVA also falls within the
same section as the one for the previous call to the function.
The LastRVASection is checked first, and the regular
sequential search for the section is carried out only if the
given RVA does not fall within the LastRVASection.

Chapter 11: Portable Executable File Format 227

RETURN VALUES
If the function succeeds, the return value is the virtual address in the mapped file;
otherwise, it is NULL. The error number can be retrieved using the GetLastErrorQ
function.

ImagelMtHeaderQ
The ImageRvaToVaQ function needs a pointer to the PE header. The ImageNtHeader
exported from the IMAGEHLP.DLL can provide you this pointer.

PIMAGE_NT_HEADERS ImageNtHeader(
L P V O I D ImageBase
) ;

PARAMETERS

ImageBase Base address where the PE file is mapped into memory using the
Win32 API for the memory mapping of files.

RETURN VALUES
If the function succeeds, the return value is a pointer to the IMAGE_NT_HEADERS
structure within the mapped file; otherwise, it returns NULL.

MapAndLoadQ
The IMAGEHLP.DLL can also take care of memory mapping a PE file for you. The
MapAndLoadQ function maps the requested PE file in memory and fills in the
LOADED_IMAGE structure with some useful information about the mapped file.

BOOL MapAndLoad(
LPSTR ImageName,
LPSTR D l l P a t h ,
PLOADED_IMAGE Loaded lmage.
BOOL DotDl l .
BOOL Readonly
);

PARAMETERS

ImageName

DllPath

~

Name of the PE file that is loaded.

Path used to locate the file if the name provided cannot be
found. If NULL is passed, then normal rules for searching
using the PATH environment variable are applied.

228 Part 11: Undocumented Windows NT

The function sets the members in the structure appropriately after loading the
PE file.

RETURN VALUES
If the function succeeds, the return value is TRUE; otherwise, it is FALSE.

UnrVlapAndLoadQ
After you are done with the mapped file, you should call the UnMapAndLoadO
function. This function unmaps the PE file and deallocates the resources allocated
by the MapAndLoadQ function.

Loadedlmage

ModuleName

hFile

MappedAddress

FileHeader

LastRvaSection

NumberOfSections

Sections
Characteristics

fSystemlmage

fDOSImage

Links

SizeOflmage

The structure LOADEDJMAGE is defined in the
IMAGEHLP.H file. The structure has the following
members:

Name of the loaded file.

Handle obtained through the call to CreateFile.

Memory address where the file is mapped.

Pointer to the PE header within the mapped file.

The function sets it to the first section (see
ImageRvaToVaQ

Number of sections in the loaded PE file.

Pointer to the first section header within the mapped file.

Characteristics of the PE file (this is explained in more
detail later in this chapter).

Flag indicating whether it is a kernel-mode driver/DLL.

Flag indicating whether it is a DOS executable.

List of loaded images.

Size of the image.

DotDll

Readonly

If the file needs to be searched and does not have an
extension, then either the .exe or the .dll extension is
used. If the DotDll flag is set to TRUE, the .dll extension
is used; otherwise, the .exe extension is used.

If the flag is set to TRUE, the file is mapped as read-only.

Chapter 11: Portable Executable File Format 229

RETURN VALUES
If the function succeeds, the return value is TRUE; otherwise, it is FALSE.

We will discuss the other useful functions from this DLL as we continue in this
chapter.

Details of the PE Format
The WINNT.H file has the structure definitions representing the PE format. We refer
to these structure definitions while describing the PE format. Let's begin at the be-
ginning. The DOS header that comes at the beginning of a PE file does not contain
much important information from the PE viewpoint. The fields in this header have
values pertaining to the DOS executable stub that follows this header. The only im-
portant field as far as PE format is considered is e_lfanew, which holds the offset to
the PE header. You can add this offset to the base of the memory-mapped file to get
the address of the PE header. You can also use the ImageNtHeaderO function ex-
plained earlier, or simply use the FileHeader field from the LOADEDJMAGE after a
call to the MapAndLoadQ function.

The IMAGE_NT_HEADERS structure that represents the PE header is defined as
follows in the WINNT.H file:

typedef s t ruct _IMAGE_NT_HEADERS {
DWORD S ignature;
IMAGE_FILE_HEADER F i l eHeader ;
IMAGE_OPTIONAL_HEADER Op t iona lHeader ;
} IMAGE_NT_HEADERS, *PIMAGE_NT_HEADERS;

The signature is PE followed by two nulls, as mentioned earlier. The COFF style
header is represented by the IMAGE_FILE_HEADER structure and is followed by the
optional header represented by the IMAGE_OPTIONAL_HEADER structure. The
fields in the COFF style header are as follows:

MachineTarget machine ID. Various values are defined in the WINNT.H file — for
example, Oxl4C is used for Intel 80386 (and compatibles) and 0x184 is used for
Alpha AXP.

PARAMETERS

Loadedlmage Pointer to a LOADEDJMAGE structure that is returned from a
call to the MapAndLoadQ function.

230 Part 11: Undocumented Windows NT

NumberOfSections

TimeDateStamp

PointerToSymbolTable

NumberOfSymbols

SizeOfOptionalHeader

Characteristics

IMAGE_FILE_EXECUTABLE_IMAGE

IMAGE_FILE_SYSTEM

IMAGE_FILE_DLL

IMAGE_FILE_UP_SYSTEM_ONLY

IMAGE_FILE_LINE_
NUMS_STRIPPED

IMAGE_FILE_LOCAL_
SYMS_STRIPPED

IMAGE_FILE_DEBUG_STRIPPED

IMAGE_FILE_RELOCS_STRIPPED

Number of sections in the file.

Time and date when the file was created.

Offset to the COFF symbol table. This field
is used only for COFF style object files and
PE files with COFF style debug
information.

Number of symbols present in the symbol
table.
Size, in bytes, of the optional header that
follows this header. This data can be used
in locating the string table that
immediately follows the symbol table. This
field is set to 0 for the object files because
the optional header is absent in them.

Attributes of the file. The flag values are
defined m the WINNT.H file. This field
contains an OR of these flags. The
important flags are as follows:
Set for an executable file.

Indicates that it is a kernel-mode
driver/DLL.

The file is a dynamic link library (DLL).

This file should be run only on an UP
machine.

Indicates that the COFF line numbers have
been removed from the file.

Indicates that the COFF symbol table has
been removed from the file.

Indicates that the debugging information
has been removed from the file.

Indicates that the base relocation
information is stripped from this file, and
the file can be loaded only at the preferred
base address. If the loader cannot load such
an image at the preferred base address, it
fails because it cannot relocate the image.

Chapter 11: Portable Executable File Format 231

S
The COFF style header is followed by the optional
header is absent in the object files. The format of the
fined as the IMAGE OPTIONAL HEADER structure in

header. The optional
optional header is de-
theWINNT.H file. The

first few fields in this structure are inherited from COFF. •; -- - " - -

Magic

MajorLinkerVersion,
MinorLinkerVersion

SizeOfCode

SizeOflnitializedData

SizeOfUninitializedData

This field is set to Ox lOb for a normal
executable/DLL.

Version of the linker that produced the file.

Size of the code section. If there are multiple code
sections, this field contains the sum of sizes of all
these sections.
Size of the initialized data section. If there are
multiple initialized data sections, this field contains
the sum of sizes of all these sections.
Same as SizeOflnitializedData, but for the
uninitialized data (BSS) section.

IMAGE_FILE_AGGRESTVE_
WSJTRIM

IMAGE_FILE_BYTES_
REVERSED_LO

IMAGE_FILE_BYTES_
REVERSED_HI

IMAGE_FILE_3 2BLT_MACHINE

IMAGE_FILE_REMOVABLE_
RUN_FROM_SWAP

IMAGE_FILE_NET_RUN_
FROM_SWAP

Aggressively trim working set.

Little endian: the least significant bit (LSB)
precedes the most significant bit (MSB) in
memory, but they are stored in reverse
order.

Big endian: the MSB precedes the LSB in
memory, but they are stored in reverse
order.

The target machine is based on 3 2 -bit-
word architecture.

If this flag is set and the file is run from a
removable media, such as a floppy, the
loader copies the file to the swap area and
runs it from there.

Similar to the previous flag. It is run from
swap if the file is run from a network
drive.

232 Part 11: Undocumented Windows NT

AddressOfEntryPoint

BaseOfCode

BaseOfData

RVA of the entry point.

RVA of the start of the code section.

RVA of the start of the data section.

Microsoft added some NT-specific fields to the optional header. These fields are
as follows:

c3 '

ImageBase If the file is loaded at this address in memory, the loader need
not do any base relocations. This is because the linker resolves
all the base relocations at the time of linking, assuming that the
file will be loaded at this address. We discuss this in more detail
in the section on the relocation table. For now, it is enough to
know that the loading time is reduced if a file gets loaded at the
preferred base address. A file may not get loaded at the preferred
base address because of the nonavailability of the address. This
happens when more than one DLL used by an executable use the
same preferred base address. The default preferred base address is
0x400000. You may want to have a different preferred base
address for your DLL so that it does not clash with that of any
other DLL used by your application. You can change the
preferred base address using a linker switch. You can also change
the base address of a file using the rebase utility that comes with
the Win32 SDK.

ReBaselmageQ
The ReBaselmageO function from the IMAGEHLP.DLL also enables you to change
the preferred base address.

I "I

Chapter 11: Portable Executable File Eormat 233

RETURN VALUES
If the function succeeds, the return value is TRUE; otherwise, it is FALSE.

The other fields in the optional header are as follows:

PARAMETERS

CurrentlmageName

SymbolPath

fReBase
fRebaseSysfileOk

fGoingDown

ChecklmageSize

OldlmageSize

OldlmageBase

NewImageSize

NewImageBase

TimeStamp

Filename that is rebased.

In case the symbolic debug information is stored as a
separate file, the path to find the corresponding symbol
file. This is required to update the header information
and timestamp of the symbol file.

The file is really rebased only if this value is TRUE.
If the file is a system file with the preferred base address
above 0x80000000, it is rebased only if this flag is
TRUE.

If you want the loaded image of the file to lie entirely
below the given address, set this flag to TRUE. For
example, if the loaded size of a DLL is 0x2000 and you
call the function with the fGoingDown flag as TRUE and
give the address as 0x600000, the DLL will be rebased at
0x508000.

Rebasing might change the loaded image size of the file
because of the section alignment requirements. If this
parameter is nonzero, the file is rebased only if the
changed size is less than this parameter.

Original image size before the rebase operation is
returned here.

Original image base before the rebase operation is
returned here.

New loaded image size after the rebase operation is
returned here.

New base address. Upon return, it contains the actual
address where the file is rebased.

New timestamp for the file.

234 Part 11: Undocumented Windows NT

SectionAlignment

FileAlignment

MajorOperatingSystem Version,
MinorOperatingSystemVersion

Majorlmage Version,
MinorlmageVersion

Maj orSubsystemVersion,
MinorSubsystemVersion

Win3 2 VersionValue

SizeOflmage

SizeOfHeaders

Checksum

Subsystem

IMAGE_SUBSYSTEM_NATTVE

IMAGE_SUBSYSTEM_
WINDOWS_GUI

IMAGE_SUBSYSTEM_
WINDOWS_CUI

IMAGE_SUBSYSTEM_OS2_CUI

A section needs to be loaded at an address
that is a multiple of the section alignment.
Refer to the discussion on RVA for more
information.

In the file, a section always starts at an
offset that is a multiple of the file
alignment. This value is some multiple of
the sector size.
Minimum operating system version required
to execute this file.

A developer can use these fields to version
his or her files. It can be specified with a
linker flag.

Minimum subsystem version required to
execute this file.
Reserved for future use.

Size of the image after considering the section
alignment. This amount of virtual memory
needs to be reserved for loading the file.

Total size of the headers, including the DOS
header, the PE header, and the section table.
The sections containing the actual data start
at this offset in the file.
This is used only for the kernel-mode
drivers/DLLs. It can be set to 0 for user-
mode executables/DLLs.
Subsystem used by the file. The following
values are defined in the WINNT.H file:
Image doesn't require a subsystem. The
kernel-mode drivers and native applications
such as CSRSS.EXE have this value for the
field.

File uses the Win32 GUI interface.

File uses the character-based user interface.

File requires the OS/2 subsystem.

Chapter 11: Portable Executable File Format 235

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
) IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

ImageDirectoryEntryToDataQ
The VirtualAddress field contains the RVA of the respective piece of information,
and the Size field contains the size of the data. To get to the actual data, you need
to convert the RVA to the actual address in the memory-mapped PE file. This can be
accomplished with the ImageDirectoryEntryToDataO function exported by IM-
AGEHLP.DLL.

IMAGE_SUBSYSTEM_
POSIX_CUI

DllCharacteristics

SizeOfStackReserve

SizeOfStackCommit

SizeOfHeapReserve

SizeOfHeapCommit

LoaderFlags

NumberOfRvaAndSizes

DataDirectory[TMAGE_
NUMBEROF_DIRECTORY
.ENTRIES]

File uses the POSIX API.

Obsolete.

Address space to be reserved for the stack.
Only the virtual address space is marked -
the swap space is not allocated.
Actual memory committed for the stack.
This much swap space is initially allocated.
The committed stack size is increased on
demand until it reaches the
SizeOfStackReserve.

Address space to be reserved for the heap.
Similar to the SizeOfStackReserve field.

Actual committed heap space. Similar to the
SizeOfStackCommit field.
Obsolete.

Number of entries in the data directory that
follows this field. It is always set to 16.

As mentioned earlier, each entry in the data
directory points to some important piece of
information. Each of these entnes is of the
type IMAGE_DATA_DIRECTORY, which is
defined as follows:

236 Part 11: Undocumented Windows NT

PARAMETERS ?t»-

Base
MappedAsImage

DirectoryEntry

Size

Base address where the file is mapped in memory.
Set this flag to TRUE if the system loader maps the file.
Otherwise, set the flag to FALSE.

Index into the data directory array. -« - V .. " -

Upon return, the size from the data directory is filled here.

RETURN VALUES
If the function succeeds, the return value is the address in the memory-mapped file
where the required data resides. Otherwise, the function returns NULL.

Indices in the Data Directory
Each index in the data directory (except a few at the end that are still unused) rep-
resents some important piece of information. In the following sections, we discuss
some of the important entries in this directory and the format in which the respec-
tive information is stored.

Export Directory
The data directory entry at the IMAGE_DIRECTORY_ENTRY_EXPORT index points
to the export directory for the file. The RVA in this directory entry points to the
.edata section. The information about the functions exported by the file (generally
a DLL) is stored here. The data directory entry points to the export directory that is
defined as the IMAGE_EXPORT_DIRECTORY structure in the WINNT.H file. The
fields in this structure are as follows:

Characteristics
TimeDateStamp

Reserved field. Always set to 0.
Date and time of creation.

Chapter 11: Portable Executable File Format 237

MajorVersion,
MinorVersion

Name

Base

NumberOfFunctions

NumberOfNames

AddressOfFunctions

^

* -^ *-

Developer can set the version of the export table.

RVA of the zero-terminated name of the DLL.
Starting ordinal for the exported functions - that is,
the least of the ordinals. Generally, this field is 1.

Total number of functions exported from the DLL.

Number of functions that are exported by name.
Some functions may be exported only by ordinal, so
this number may be less than NumberOfFunctions.
RVA of an array (let's call it as the export-functions
array) that has an entry for each function exported
from the DLL. Hence, the size of this array is equal to
the NumberOfFunctions field. The entry at index i
corresponds to the function exported with ordinal i +
Base. Each entry in this array is also an RVA. If the
RVA for a particular array entry points within the
export section, then it is a forwarder. Forwarder
means that the function is not present in this DLL,
but it is a forwarder reference to some function in
another DLL. In such a case, the RVA points to an
ASCIIZ string that stores the name of the other DLL
and the function name separated by a period. In case
the target DLL exports the function by ordinal, the
function name is formed as # followed by the
ordinal printed in decimal. For example, the
KERNEL32.DLL for Windows NT forwards the
HeapAllocO function to the RtlAllocateHeapQ
function in the NTDLL.DLL. Hence, the corresponding
RVA in this case points to a location within the
export section that holds the string
NTDLLRtlAllocateHeap. The Win32 applications can
import the HeapAllocO function from the
KERNEL32.DLL without worrying about all these
details. When the application runs on Windows 95,
the loader resolves the import reference to the
function in the KERNEL32.DLL. When the same
application runs on Windows NT, the loader finds
that the function is forwarded to the NTDLL.DLL.
Hence, the loader automatically loads the NTDLL.DLL
and resolves the imported function to the
RtLAllocateHeapO function.

238 Part 11: Undocumented Windows NT

When an export-functions array entry is not a forwarder - that is, the RVA does
not lie within the export section - the RVA points to the entry point of the function
or to the location of the exported variable.

The export-functions array may have gaps. This is beacause some ordinals might
be left unused while exporting functions, and some ordinals might not have any
corresponding export. In such a case, the corresponding array entry is set to 0.

AddressOfNames

AddressOfNameOrdinals

RVA of an array called as the export-names array
that has an entry for every function that is
exported by name. Hence, the size of this array is
equal to the NumberOfNames field. Each entry in
this array is an RVA pointing to an ASCIIZ string
containing the export name. The array is sorted
on the lexical order so as to allow binary search.

RVA of an array of ordinals henceforth called as
the export-ordinals array. This array has the size
same as that of the AddressOfNames array. All
three arrays, namely, export-names, export-
ordinals, and export-functions, are instrumental
in resolving imports by name. For resolving an
import by name, the loader first searches the
name in the export-names array. If the name
matches an entry with index i, the ith entry in the
export-ordinals array is the ordinal of the
function. Finally, the address of the function can
be found from the export-functions array.

Import Directory
The next index in the data directory, IMAGE_DIRECTORY_ENTRY_IMPORT, is re-
served for the import directory of an executable/DLL. The RVA in this data directory
entry points to the import directory, which is nothing but a variable-sized array of
IMAGE_IMPORT_DESCRIPTORs, one for each imported DLL. The first field in this
structure is a union. If the Characteristics field in this union is 0, it indicates the end
of the variable-sized import descriptors array. Otherwise, the union is interpreted
using the other member, OriginalFirstThunk.

OriginalFirstThunk

* * ~i
-,(, -

This is an RVA of what Microsoft calls as the Import
Lookup Table (ILT). Each entry in the ILT is a 32-bit
number. If the MSB of this number is set, it is treated as
an import by ordinal. The bits 0 through 30 are treated
as the ordinal of the imported function. If the MSB is
not set, the number is treated as an RVA to the
IMAGE IMPORT BY NAME structure. The first member

Chapter 11: Portable Executable File Format 239

of this structure is a hint for searching for the imported
name in the export directory of the imported DLL. The
loader uses this hint as the starting index in the export-
names array when it does a binary search while
resolving the import reference. The hint is followed by
an ASCIIZ name of the import reference.

The WINNT.H file provides the IMAGE_SNAP_BY_ORDINAL macro to determine
whether it's an import by ordinal. It also provides the IMAGE_ORDINAL macro to
get the ordinal from the 32-bit number in the ILT. The ILT is a variable-sized array.
The end of the ILT is marked with a 0.

The other members in the IMAGE IMPORT_DESCRLPTOR structure are as follows:

DYNAMIC LINKING WITH PE FILES
Every DLL has an import library that can either be created using an import librar-
ian or may be generated by the linker itself while creating the DLL. The import li-
brary has stub functions with names the same as those of the functions exported
from the DLL. The import library also has a .idata section containing an import
table that has entries for all the functions from the DLL. Each stub function is an
indirect jump that refers to the appropriate entry in the LAT in the .idata section.
When an executable is linked with the import library, the linker resolves the im-
ported function calls to the stub functions in the import library. The linker also con-
catanates the .text section from the import library that contains the stub functions
with the .text section of the generated executable. The .idata sections and, inciden-
tally, the import directories are also concatenated. The stage is now set for loading.

TimeDateStamp

ForwarderChain

Name

FirstThunk

This field is set to 0, unless the imports are bound. Soon,
we discuss what's meant by binding the imports of a PE
file.
The field is used only if the imports are bound.

RVA of the ASCIIZ string that stores the name of the
imported DLL.

RVA of the Import Address Table (LAT). The IAT is another
array parallel to the ILT, unless the image is bound. The
IAT also has ordinals or pointers to the IMAGE_IMPORT_
BY_NAME structures. When the loader resolves the
import references, it replaces the entries in the IAT with
the actual addresses of the corresponding functions.
Astonishingly, that is all it needs to do to achieve
dynamic linking — everything else is already set in place
by the linker and import librarian. Let's see how all these
components work together to achieve dynamic linking.

240 Part 11: Undocumented Windows NT

While loading, the entries in the IAT are replaced by the actual function addresses,
and that's it. Now when the function is called, the control is transferred to the stub
function that performs an indirect jump. As the IAT entry contains the address of
the actual function from the DLL, the control is transferred to the required function.

The situation is a bit different if you use the new _declspec(dllimport) directive
while prototyping an imported function. In that case, the compiler itself generates
an import table. In addition, it generates an indirect call referring to the appropri-
ate location in the generated IAT. This method does away with the overhead of an
extra jump.

BINDING IMPORTS FOR A PE FILE
A major portion of loading time is spent on resolving the imports. The loader has
to search each imported symbol in the export directory of the imported DLL to find
out the virtual address of the symbol. The loading time can be drastically reduced
if the IAT contains the actual address of the symbol instead of the name or ordi-
nal. Such a PE file is called as a bound image. The imported symbol addresses are
calculated assuming that the imported DLL will be loaded at the preferred base ad-
dress at the time of loading. The IMAGE_IMPORT_DESCRIPTORs, in a bound PE
file, are also modified. The TimeDateStamp field stores the timestamp of the im-
ported DLL. At the time of loading, if this timestamp does not match with that of
the DLL, the imports need to be resolved again. Because the IAT is modified and
does not contain the symbol names or ordinals, the ILT is used, in this case, to re-
solve the imports.

The forwarded functions pose another problem with binding. The addresses of
the forwarded functions cannot be calculated at bind time, and so these functions
have to be resolved at load time. A list of all the forwarded functions for an im-
ported DLL is maintained through the ForwarderChain member in the correspond-
ing IMAGE_IMPORT_DESCRIPTOR. This member stores the index of a forwarded
function in the IAT. The IAT entry at this index stores the index of the next for-
warded function, and so on, forming a list of forwarded functions. The list is termi-
nated by a -1 entry.

BindlrnageQ
The bind utility that is shipped with Win32 SDK enables binding of PE files. Also,
the Bindlmage and BindlmageExO functions in the IMAGEHLP.DLL provide this
functionality.

BOOL Bindlmage(
LPSTR ImageName,
LPSTR D l lPa th ,
LPSTR Symbol Path
) . -

Chapter 11: Portable Executable File Format 241

PARAMETERS

ImageName

DllPath

SymbolPath

The filename of the file to be bound. This can contain only a
filename, a partial path, or a full path.

A root path to search for ImageName if the filename contained
in ImageName cannot be opened.

A root path to search for the corresponding symbol file. If the
symbol file is stored separately, the header of the symbol file is
changed to reflect the changes in the PE file. -

RETURN VALUES
If the function succeeds, the return value is TRUE; otherwise, it is FALSE.

BindlmageExQ
This function is very similar to Bindlmage function except it provides more cus-
tomization such as getting a periodic callback during the progress of binding
process.

BOOL B indImageEx(
IN DWORD F l a g s ,
IN LPSTR ImageName,
IN LPSTR Dl lPath,
IN LPSTR Symbo lPa th ,
IN PIMAGEHLP_STATUS_ROUTINE Sta tusRout ine

) ;

PARAMETERS
This function has the following additional parameters:

Flags

BIND_NO_BOUND_IMPORTS

BIND_NO_UPDATE

BIND_ALL_IMAGES

StatusRoutine

The field controls the behavior of the function.
It is set to as an OR of the flag values defined
in the IMAGEHLP.H file. The following flag
values are defined in the IMAGEHLP.H file:

Do not generate a new import address table.

Do not make any changes to the file.

Bind all images that are in the call tree for this
file.

Pointer to a status routine. The status routine is
called during the progress of the image binding
process.

242 Part 11: Undocumented Windows NT

RETURN VALUES
If the function succeeds, the return value is TRUE; otherwise, it is FALSE.

Calling Bindlmage is equivalent to calling BindlmageEx with Flags as 0 and
StatusRoutine as NULL. That is, calling BindlmageflmageName, DllPath, SymbolPath)
is equivalent to calling BindImageEx(0, ImageName, DllPath, SymbolPath, NULL).

Resource Directory
The next index in the data directory, IMAGE_DIRECTORY_ENTRY_RESOURCE,
refers to the resource directory for a PE file. The resource directory and the re-
sources themselves are generally stored in a section named .rsrc section. The re-
sources are maintained in a tree structure similar to that in a file system. The root
directory contains subdirectories. A subdirectory can contain subdirectories or re-
source data. The subdirectories can be nested to any level. But Windows NT only
uses a three-level structure. At each level, the resource directory branches accord-
ing to certain characteristics of the resources. At the first level, the type of the re-
source - bitmap, menu, and so on - is considered. All the bitmaps are stored under
one subtree, all the menus are stored under another subtree, and so on. At the next
level, the name of the resource is considered, and the third level classifies the re-
source according to the language ID. The third-level resource directory points to a
leaf node that stores the actual resource data.

A resource directory consists of summary information about the directory fol-
lowed by the directory entries. Each directory entry has a name or ID that is inter-
preted as a type ID, a name ID, or a language ID, depending on the level of the
directory. A directory entry can point either to the resource data or to a subdirec-
tory that has a similar format.

The format of the resource directory is defined as the IMAGE_RESOURCE_DI-
RECTORY structure in WINNT.H.

Characteristics

TimeDateStamp

MajorVersion, MinorVersion

NumberOfNamedEntries

NumberOfldEntries

Currently unused. Set to 0.

Date and time when the resource was generated by
the resource compiler.

Can be set by the user.

Number of directory entries having string names.
These entries immediately follow the directory
summary information and are sorted.

Number of directory entries that use integer IDs as
the names. These entries follow the ones having
string names.

Chapter 11: Portable Executable File Format 243

This summary information is followed by the directory entries. Each directory
has a format as defined by the IMAGE_RESOURCE_DIRECTORY_ENTRY structure
in WINNT.H. This structure is composed of two unions. The first union stores the ID
of the entry. If the MSB is set, then the lower 31 bits in this field is an RVA of the
Unicode string that stores the name of the entry. The Unicode string consists of the
length of the string followed by the 16-bit Unicode characters. If the MSB is not set,
then the union stores the integer ID of the resource. This first union stores the type
ID, the name ID, or the language ID, depending on the level of the directory. The
second union, in the IMAGE_RESOURCE_DIRECTORY_ENTRY structure, points ei-
ther to another resource directory or to the resource data, depending on the MSB. If
the bit is set, the lower 31 bits is an RVA of another subdirectory. If the MSB is not
set, then it's an RVA of the resource data entry that forms a leaf node of the re-
source directory tree structure. The format of the resource data entry is defined as
the IMAGE_RESOURCE_DATA_ENTRY structure in the WINNT.H file and has fol-
lowing members:

OffsetToData RVA of the actual resource data.

Size Size of the resource data.

CodePage Code page used to decode code point values within the
resource data. Typically, the code page would be the Unicode
code page.

Relocation Table
A PE file needs only based relocations. The linker resolves all the relative reloca-
tions, assuming that the file will get loaded at the preferred base address. For exam-
ple, if a function foo has the RVA as 0x100 and the preferred base address is
0x400000, the linker resolves the call to foo as a call to address 0x400100. At run
time, if the file is loaded at the preferred base address of 0x400000, then no reloca-
tion needs to be preformed. If, for some reason, the file cannot be loaded at the base
address of 0x400000, the loader needs to patch the call. If the loader manages to
load the file at a base address of 0x600000, it needs to change the call address to
0x600100. In general, it needs to add the difference of 0x200000 to all the to-be-
patched locations. This process is called as the based relocation. The list of the to-be-
patched locations, also called as fixups, is maintained in the relocation table that is
generally present in the .reloc section and is pointed to by the data directory entry at
the IMAGE_DIRECTORY_ENTRY_BASERELOC index. The relocation table is nothing
but a series of relocation blocks, each representing the fixups for a 4K page. Each re-
location block has a header followed by the relocation entries for the corresponding
page. The relocation block format is defined as the IMAGE_BASE_RELOCATION
structure in the WINNT.H file, and it has following fields:

244 Part 11: Undocumented Windows NT

VirtualAddress RVA of the page to be patched.

SizeOfBlock Total size of the relocation block, including the header and
the relocation entries.

Each relocation entry is a 16-bit word. The higher 4 bits indicate the type of re-
location, and the lower 12 bits are the offset of the fixup location within the 4K
page. The address-to-patched is calculated by adding the base address for loading,
the RVA of the page to be patched, and the 12-bit offset within the page. The relo-
cation types are defined in the WINNT.H file - only two of them are used on Intel
machines:

IMAGE_REL_BASED_ABSOLUTE

IMAGE_REL_BASED_fflGHLOW

The relocation is skipped. This type can be
used to pad a relocation block so that the
next block starts at a 4-byte boundary.
The relocation adds the base-address
difference to the 3 2 -bit double word at the
location denoted by the 12-bit offset.

Debug Directory
The operating system is not concerned with the debug information present in a PE
file. The debugging tools access the debug information in a PE file. There are vari-
ous debugging tools, which expect the debug information in different formats. The
corresponding compilers/linkers also store the debug information in different for-
mats. The PE format allows the debug information to be stored in different formats,
such as COFF, Frame Pointer Omission (FPO), CodeView (CV4), and so on. A single
file may contain debug information in more than one format. The debug directory
pointed to by the IMAGE_DTRECTORY_ENTRY_DEBUG entry in the data directory
is an array of debug directory entries, one for each debug information format. The
IMAGE_DEBUG_DIRECTORY structure in the WINNT.H file represents the format of
a debug directory entry.

Characteristics
TimeDateStamp

MajorVersion, MinorVersion

Type

SizeOfData
AddressOfRawData

PointerToRawData

Currently unused. Set to 0.
Date and time when the debug data was created.

Version of the debug data format.

Type of the debug data format.

Size of the debug data.
RVA of the debug data.

Within file offset to the debug data.

>

Chapter 11: Portable Executable File Format 245

Of the different debug information formats, three are frequently encountered in
PE files. The first one is the format used by the popular CodeView debugger. This
format is defined in the CV4 specification. The FPO format is used to describe non-
standard stack frames. Not all the files in a PE file need have an FPO format debug
entry. The functions without one are assumed to have a normal stack frame. The
third important format is COFF, which is the native debug information format for
PE files. The PE header itself points to the COFF symbol table. The COFF debug in-
formation consists of symbols and line numbers.

Thread Local Storage
The threads executing in a process share the same global data space. Sometimes, it
may be required that each thread has some storage local to itself. For example, say
a variable i needs to be local for each thread.

In such a case, each thread gets a private copy of i. Whenever a particular thread
is running, its own private copy of i should be automatically activated. This is
achieved in Windows NT using the Thread Local Storage (TLS) mechanism. Let's see
how it works.

Do not confuse the local data of a thread with the local variables that are cre-
ated on stack. Each thread has a separate stack and local variables that are cre-
ated and destroyed separately for each thread as the stack grows and shrinks. In
this section, the phrase local data means global variables that have a separate
copy for each thread.

The operating system maintains a structure called as the Thread Environment
Block (TEB) for every thread running in the system. The FS segment register is al-
ways set such that the address FS:0 points to the TEB of the thread being executed.
The TEB contains a pointer to the TLS array. The TLS array is an array of 4-byte
DWORDs. Similar to the TEB, a separate TLS array is present for each thread. A
thread can store its local data in the TLS array. Generally, programs store pointers
to local data in some slot in the TLS array. The slot allocation for the TLS array is
controlled by the API functions TlsAllocQ and TlsFreeQ. The Win32 API also pro-
vides functions to set and get the value at a particular index in the TLS array.

It is cumbersome to access the thread-specific data using the API functions. An
easier way is to use the _declspec(thread) specification while declaring global vari-
ables that need to have a private copy for each thread. All such variables are gath-
ered by the compiler/linker, and a single TLS array index is automatically allotted
to this bunch of data. The TLS array entry at this index contains the pointer to a lo-
cal data buffer that stores all these variables. These variables are accessed as any
other normal variable in the program. Whenever such a variable is accessed, the
compiler takes care to generate the code to access the TLS array entry and the data
at a proper offset within the local data buffer.

This discussion is bit off the track. However, it is necessary before discussing the
IMAGE_DIRECTORY_ENTRY_TLS data directory entry. The TLS directory structure
is defined as IMAGE_TLS_DIRECTORY in the WINNT.H. Let's have a look at this
structure and see how it fits in the TLS mechanism.

246 Part 11: Undocumented Windows NT

StartAddressOfRawData

EndAddressOfRawData

AddressOflndex

AddressOfCallBacks

SizeOfZeroFill

Characteristics

Each time a new thread is created, the operating
system allocates a new local data buffer for the
thread and initializes the buffer with the data that is
pointed to by this field. Note that this address is not
an RVA, but it is a proper virtual address that has a
relocation entry in the .reloc section.

Virtual address of the end of the initialization data.
The rest of the local data buffer is filled with zeros.

Address in the data section where the loader should
store the automatically allotted TLS index. The code
accessing TLS variables accesses the index from this
location.

Pointer to a null-terminated array of TLS callback
functions. Each function in this array is called
whenever a new thread is created. These functions
can perform additional initialization (for example,
calling constructors) for the TLS data. The TLS
callback has the same parameters as the DLL entry-
point function.

Size of the local data that is to be initialized to zero.
The total size of the local data is
(EndAddressOfRawData StartAddressOfRawData) +
SizeOfZeroFill.

-. r * ,_

Reserved.

Section Table
We've roamed through the PE format without bothering about the section formats.
This is possible because of the data directory that directly locates the important
pieces of information within a PE file. You need not know about the sections at all
to interpret a PE file. Nevertheless, in case you need to modify a PE file, you may
be required to know about the sections and section headers. For example, you may
want to add, remove, or extend a particular section, and this requires changes to
the section table, among other things.

As mentioned earlier, the PE header is followed by the section table. The section
table is an array of section headers. The format of the section header is defined by
the IMAGE_SECTION_HEADER structure in the WINNT.H file. The members of a
section header are as follows:

Chapter 11: Portable Executable File Format 247

Name

VirtualSize

VirtualAddress

SizeOfRawData

PointerToRawData

PointerToRelocations

PointerToLinenumbers

NumberOfRelocations

NumberOfLinenumbers

Characteristics

IMAGE_SCN_CNT_CODE

IMAGE_SCN_CNT_
INITIALIZED_DATA

IMAGE_SCN_CNT_
UNINITIALIZED_DATA

IMAGE_SCN_LNK_REMOVE

IMAGE_SCN_MEM_
DISCARDABLE

Character array of size
IMAGE_SIZEOF_SHORT_NAME. Contains
the name of the section.

Size of the section.

RVA of the section data when loaded in
memory. ^ „

Size of the section as stored in the file. This
is equal to the VirtualSize rounded to the
next file alignment multiple.

Within file offset to the section data. If you
memory map a PE file, this field needs to be
used to get to the section data.
Used only in the object files.

Within file offset to the COFF style line
number information.

Used only in the object files.

Number of records in the line number
information. . ,

The attributes of the section. It is an OR of
the section characteristics flags defined in
the WINNT.H file. Some of the important
flags are as follows:

Section contains executable code.
Section contains initialized data.

Section contains uninitialized data.

Section will not become part of the loaded
image. The .debug section may have this
flag set.
Section can be discarded. The relocation
table and debug information can be
discarded after the loading process is over.
Hence, the .debug and .reloc sections have
this flag set.

IMAGE SCN_MEM_NOT CACHED Section cannot be cached.

248 Part 11: Undocumented Windows NT

IMAGE_SCN_MEM_NOT_PAGED

IMAGE_SCN_MEM_SHARED

«

IMAGE_SCN_MEM_EXECUTE

TMAGE_SCN_MEM_READ

IMAGE SCN MEM WRITE

Section is not pageable.

Section can be shared in memory. If a DLL
has the data section with this flag set, all
the instances of the DLL in different
processes share the same data.

Section can be executed. For the code
sections, both the IMAGE_SCN_CNT_CODE
and IMAGE_SCN_MEM_EXECUTE flags are
set.
Section can be read.

Section can be written to.

Loading Procedure
Let's see how the loader interprets a PE file and prepares a memory image for exe-
cution. The loader needs to find the free virtual address space to map the file in
memory. The loader tries to load the image at the preferred base address. After this
is done, the loader maps the sections in memory. The loader goes through the sec-
tion table and maps each section at the address calculated by adding the RVA of the
section to the base address. The page attributes are set according to the section's
characteristic requirements. After mapping the section in memory, the loader per-
forms based relocation if the base address is not equal to the preferred base address.
Then, the import table is checked and the required DLLs are loaded. The same pro-
cedure for loading an executable - mapping sections, based relocation, resolving
imports, and so on - is applied while loading a DLL. After loading each DLL, the
IAT is fixed to point to the actual imported function address.

That's it! The image is ready for execution.

Summary
Microsoft introduced the Portable Executable (PE) file format with Windows NT.
The PE format serves as the executable file format for all the 32-bit Microsoft oper-
ating systems (that is, the various versions of Windows NT and Windows 95/98)
though these operating systems still support the older executable file formats, in-
cluding the DOS executable file format.

Chapter 11: Portable Executable File Format 249

Various components in a PE file are addressed using the relative virtual address
(RVA). The IMAGEHLP.DLL provides us with utility functions to memory map a PE
file to find the address in the memory corresponding to the RVA specified in the PE
file. A PE file is composed of the file headers, the data directory, the section table,
and the various sections. The data directory points to the important parts of the PE
file: the export directory, the import directory, the relocation table, the debug direc-
tory, and the Thread Local Storage. The export directory lists the symbols exported
from the PE file, which is most likely a DLL. The import directory lists all the sym-
bols imported by the PE file. When a PE file is loaded in memory for execution, the
loader resolves the imported symbols to actual virtual addresses in the DLL that ex-
ports the symbols. This process is termed dynamic linking.

The PE headers are followed by the section table that points to all the sections,
including the ones pointed to by the various data directory entries. The loader reads
the section table and maps various sections of a PE file in memory. Then it prepares
the image for execution by relocating the image for the mapped address and re-
solving various imported symbols after loading the required DLLs.

