
DelphiBasics

Home Counterstrikewi's Releases Snippets Projects Project Releases

Articles Sitemap

Delphi Basics - Free Delphi Source Code - Ultimate Programming Resource >

Delphi Basics Articles >

An In-Depth Look into the Win32 Portable
Executable File Format - Part 2
posted 16 Mar 2010, 05:04 by Delphi Basics [updated 21 Nov 2010, 07:34]

See Part 1 here: An In-Depth Look into the Win32 Portable Executable File Format -

Part 1

Source: http://msdn.microsoft.com/en-us/magazine/cc301808.aspx

SUMMARY The Win32 Portable Executable File Format (PE) was designed to be a

standard executable format for use on all versions of the operating systems on all

supported processors. Since its introduction, the PE format has undergone

incremental changes, and the introduction of 64-bit Windows has required a few

more. Part 1 of this series presented an overview and covered RVAs, the data

directory, and the headers. This month in Part 2 the various sections of the

executable are explored. The discussion includes the exports section, export

forwarding, binding, and delayloading. The debug directory, thread local storage,

and the resources sections are also covered.

Last month in Part 1 of this article, I began a comprehensive tour of Portable

Executable (PE) files. I described the history of PE files and the data structures that

make up the headers, including the section table. The PE headers and section table

tell you what kind of code and data exists in the executable and where you should

look to find it.

 This month I'll describe the more commonly encountered sections. If you're not

familiar with basic PE file concepts, you should read Part 1 of this article first.

 Last month I described how a section is a chunk of code or data that logically

belongs together. For example, all the data that comprises an executable's import

tables are in a section. Let's look at some of the sections you'll encounter in

Search this site

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

1 of 21 9/7/20, 10:21 AM

executables and OBJs. Unless otherwise stated, the section names in Figure 1 come

from Microsoft tools.

Figure 1 Section Names

Name Description

.text The default code section.

.data The default read/write data section. Global variables

typically go here.

.rdata The default read-only data section. String literals and

C++/COM vtables are examples of items put into .rdata.

.idata The imports table. It has become common practice (either

explicitly, or via linker default behavior) to merge the .idata

section into another section, typically .rdata. By default,

the linker only merges the .idata section into another

section when creating a release mode executable.

.edata The exports table. When creating an executable that

exports APIs or data, the linker creates an .EXP file. The

.EXP file contains an .edata section that's added into the

final executable. Like the .idata section, the .edata section

is often found merged into the .text or .rdata sections.

.rsrc The resources. This section is read-only. However, it should

not be named anything other than .rsrc, and should not be

merged into other sections.

.bss Uninitialized data. Rarely found in executables created

with recent linkers. Instead, the VirtualSize of the

executable's .data section is expanded to make enough

room for uninitialized data.

.crt Data added for supporting the C++ runtime (CRT). A good

example is the function pointers that are used to call the

constructors and destructors of static C++ objects.

.tls Data for supporting thread local storage variables declared

with __declspec(thread). This includes the initial value of

the data, as well as additional variables needed by the

runtime.

.reloc The base relocations in an executable. Base relocations are

generally only needed for DLLs and not EXEs. In release

mode, the linker doesn't emit base relocations for EXE

files. Relocations can be removed when linking with the

/FIXED switch.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

2 of 21 9/7/20, 10:21 AM

.sdata "Short" read/write data that can be addressed relative to

the global pointer. Used for the IA-64 and other

architectures that use a global pointer register. Regular-

sized global variables on the IA-64 will go in this section.

.srdata "Short" read-only data that can be addressed relative to the

global pointer. Used on the IA-64 and other architectures

that use a global pointer register.

.pdata The exception table. Contains an array of

IMAGE_RUNTIME_FUNCTION_ENTRY structures, which

are CPU-specific. Pointed to by the

IMAGE_DIRECTORY_ENTRY_EXCEPTION slot in the

DataDirectory. Used for architectures with table-based

exception handling, such as the IA-64. The only

architecture that doesn't use table-based exception

handling is the x86.

.debug$S Codeview format symbols in the OBJ file. This is a stream of

variable-length CodeView format symbol records.

.debug$T Codeview format type records in the OBJ file. This is a

stream of variable-length CodeView format type records.

.debug$P Found in the OBJ file when using precompiled headers.

.drectve Contains linker directives and is only found in OBJs.

Directives are ASCII strings that could be passed on the

linker command line. For instance:

 -defaultlib:LIBC

Directives are separated by a space character.

.didat Delayload import data. Found in executables built in

nonrelease mode. In release mode, the delayload data is

merged into another section.

The Exports Section

 When an EXE exports code or data, it's making functions or variables usable by

other EXEs. To keep things simple, I'll refer to exported functions and exported

variables by the term "symbols." At a minimum, to export something, the address of

an exported symbol needs to be obtainable in a defined manner. Each exported

symbol has an ordinal number associated with it that can be used to look it up. Also,

there is almost always an ASCII name associated with the symbol. Traditionally, the

exported symbol name is the same as the name of the function or variable in the

originating source file, although they can also be made to differ.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

3 of 21 9/7/20, 10:21 AM

 Typically, when an executable imports a symbol, it uses the symbol name rather

than its ordinal. However, when importing by name, the system just uses the name

to look up the export ordinal of the desired symbol, and retrieves the address using

the ordinal value. It would be slightly faster if an ordinal had been used in the first

place. Exporting and importing by name is solely a convenience for programmers.

 The use of the ORDINAL keyword in the Exports section of a .DEF file tells the

linker to create an import library that forces an API to be imported by ordinal, not

by name.

 I'll begin with the IMAGE_EXPORT_DIRECTORY structure, which is shown in

Figure 2.

Figure 2 IMAGE_EXPORT_DIRECTORY Structure Members

Size Member Description

DWORD Characteristics Flags for the exports. Currently,

none are defined.

DWORD TimeDateStamp The time/date that the exports

were created. This field has the

same definition as the

IMAGE_NT_HEADERS.FileHeader.

TimeDateStamp (number of

seconds since 1/1/1970 GMT).

WORD MajorVersion The major version number of the

exports. Not used, and set to 0.

WORD MinorVersion The minor version number of the

exports. Not used, and set to 0.

DWORD Name A relative virtual address (RVA) to

an ASCII string with the DLL

name associated with these

exports (for example,

KERNEL32.DLL).

DWORD Base This field contains the starting

ordinal value to be used for this

executable's exports. Normally,

this value is 1, but it's not

required to be so. When looking

up an export by ordinal, the value

of this field is subtracted from the

ordinal, with the result used as a

zero-based index into the Export

Address Table (EAT).

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

4 of 21 9/7/20, 10:21 AM

DWORD NumberOfFunctions The number of entries in the EAT.

Note that some entries may be 0,

indicating that no code/data is

exported with that ordinal value.

DWORD NumberOfNames The number of entries in the

Export Names Table (ENT). This

value will always be less than or

equal to the NumberOf-Functions

field. It will be less when there are

symbols exported by ordinal only.

It can also be less if there are

numeric gaps in the assigned

ordinals. This field is also the size

of the export ordinal table

(below).

DWORD AddressOfFunctions The RVA of the EAT. The EAT is an

array of RVAs. Each nonzero RVA

in the array corresponds to an

exported symbol.

DWORD AddressOfNames The RVA of the ENT. The ENT is

an array of RVAs to ASCII strings.

Each ASCII string corresponds to

a symbol exported by name. This

table is sorted so that the ASCII

strings are in order. This allows

the loader to do a binary search

when looking for an exported

symbol. The sorting of the names

is binary (like the C++ RTL

strcmp function provides), rather

than a locale-specific alphabetic

ordering.

DWORD AddressOfNameOrdinals The RVA of the export ordinal

table. This table is an array of

WORDs. This table maps an array

index from the ENT into the

corresponding export address

table entry.

The exports directory points to three arrays and a table of ASCII strings. The only

required array is the Export Address Table (EAT), which is an array of function

pointers that contain the address of an exported function. An export ordinal is

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

5 of 21 9/7/20, 10:21 AM

simply an index into this array (see Figure 3).

Figure 3 The IMAGE_EXPORT_DIRECTORY Structure

 Let's go through an example to show exports at work. Figure 4 shows some of

the exports from KERNEL32.DLL.

Figure 4 KERNEL32 Exports

exports table:

 Name: KERNEL32.dll

 Characteristics: 00000000

 TimeDateStamp: 3B7DDFD8 -> Fri Aug 17 23:24:08 2001

 Version: 0.00

 Ordinal base: 00000001

 # of functions: 000003A0

 # of Names: 000003A0

 Entry Pt Ordn Name

 00012ADA 1 ActivateActCtx

 000082C2 2 AddAtomA

•••remainder of exports omitted

Let's say you've called GetProcAddress on the AddAtomA API in KERNEL32. The

system begins by locating KERNEL32's IMAGE_EXPORT_DIRECTORY. From that, it

obtains the start address of the Export Names Table (ENT). Knowing that there are

0x3A0 entries in the array, it does a binary search of the names until it finds the

string "AddAtomA".

 Let's say that the loader finds AddAtomA to be the second array entry. The

loader then reads the corresponding second value from the export ordinal table.

This value is the export ordinal of AddAtomA. Using the export ordinal as an index

into the EAT (and taking into account the Base field value), it turns out that

AddAtomA is at a relative virtual address (RVA) of 0x82C2. Adding 0x82C2 to the

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

6 of 21 9/7/20, 10:21 AM

load address of KERNEL32 yields the actual address of AddAtomA.

Export Forwarding

 A particularly slick feature of exports is the ability to "forward" an export to

another DLL. For example, in Windows NT®, Windows® 2000, and Windows XP, the

KERNEL32 HeapAlloc function is forwarded to the RtlAllocHeap function exported

by NTDLL. Forwarding is performed at link time by a special syntax in the

EXPORTS section of the .DEF file. Using HeapAlloc as an example, KERNEL32's

DEF file would contain:

 EXPORTS

 •••

 HeapAlloc = NTDLL.RtlAllocHeap

 How can you tell if a function is forwarded rather than exported normally? It's

somewhat tricky. Normally, the EAT contains the RVA of the exported symbol.

However, if the function's RVA is inside the exports section (as given by the

VirtualAddress and Size fields in the DataDirectory), the symbol is forwarded.

 When a symbol is forwarded, its RVA obviously can't be a code or data address

in the current module. Instead, the RVA points to an ASCII string of the DLL and

symbol name to which it is forwarded. In the prior example, it would be

NTDLL.RtlAllocHeap.

The Imports Section

 The opposite of exporting a function or variable is importing it. In keeping with

the prior section, I'll use the term "symbol" to collectively refer to imported

functions and imported variables.

 The anchor of the imports data is the IMAGE_IMPORT_DESCRIPTOR structure.

The DataDirectory entry for imports points to an array of these structures. There's

one IMAGE_IMPORT_DESCRIPTOR for each imported executable. The end of the

IMAGE_IMPORT_DESCRIPTOR array is indicated by an entry with fields all set to 0.

Figure 5 shows the contents of an IMAGE_IMPORT_DESCRIPTOR.

Figure 5 IMAGE_IMPORT_DESCRIPTOR Structure

Size Member Description

DWORD OriginalFirstThunk This field is badly named. It contains

the RVA of the Import Name Table

(INT). This is an array of

IMAGE_THUNK_DATA structures. This

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

7 of 21 9/7/20, 10:21 AM

field is set to 0 to indicate the end of

the array of

IMAGE_IMPORT_DESCRIPTORs.

DWORD TimeDateStamp This is 0 if this executable is not bound

against the imported DLL. When

binding in the old style (see the section

on Binding), this field contains the

time/date stamp (number of seconds

since 1/1/1970 GMT) when the binding

occurred. When binding in the new

style, this field is set to -1.

DWORD ForwarderChain This is the Index of the first forwarded

API. Set to -1 if no forwarders. Only

used for old-style binding, which could

not handle forwarded APIs efficiently.

DWORD Name The RVA of the ASCII string with the

name of the imported DLL.

DWORD FirstThunk Contains the RVA of the Import Address

Table (IAT). This is array of

IMAGE_THUNK_DATA structures.

 Each IMAGE_IMPORT_DESCRIPTOR typically points to two essentially identical

arrays. These arrays have been called by several names, but the two most common

names are the Import Address Table (IAT) and the Import Name Table (INT).

Figure 6 shows an executable importing some APIs from USER32.DLL.

Figure 6 Two Parallel Arrays of Pointers

 Both arrays have elements of type IMAGE_THUNK_DATA, which is a pointer-

sized union. Each IMAGE_THUNK_DATA element corresponds to one imported

function from the executable. The ends of both arrays are indicated by an

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

8 of 21 9/7/20, 10:21 AM

IMAGE_THUNK_DATA element with a value of zero. The IMAGE_THUNK_DATA

union is a DWORD with these interpretations:

DWORD Function; // Memory address of the imported function

DWORD Ordinal; // Ordinal value of imported API

DWORD AddressOfData; // RVA to an IMAGE_IMPORT_BY_NAME with

 // the imported API name

DWORD ForwarderString;// RVA to a forwarder string

 The IMAGE_THUNK_DATA structures within the IAT lead a dual-purpose life. In

the executable file, they contain either the ordinal of the imported API or an RVA to

an IMAGE_IMPORT_BY_NAME structure. The IMAGE_IMPORT_BY_NAME structure

is just a WORD, followed by a string naming the imported API. The WORD value is a

"hint" to the loader as to what the ordinal of the imported API might be. When the

loader brings in the executable, it overwrites each IAT entry with the actual address

of the imported function. This a key point to understand before proceeding. I highly

recommend reading Russell Osterlund's article in this issue which describes the

steps that the Windows loader takes.

 Before the executable is loaded, is there a way you can tell if an

IMAGE_THUNK_DATA structure contains an import ordinal, as opposed to an RVA

to an IMAGE_IMPORT_BY_NAME structure? The key is the high bit of the

IMAGE_THUNK_DATA value. If set, the bottom 31 bits (or 63 bits for a 64-bit

executable) is treated as an ordinal value. If the high bit isn't set, the

IMAGE_THUNK_ DATA value is an RVA to the IMAGE_IMPORT_BY_NAME.

 The other array, the INT, is essentially identical to the IAT. It's also an array of

IMAGE_THUNK_DATA structures. The key difference is that the INT isn't

overwritten by the loader when brought into memory. Why have two parallel arrays

for each set of APIs imported from a DLL? The answer is in a concept called

binding. When the binding process rewrites the IAT in the file (I'll describe this

process later), some way of getting the original information needs to remain. The

INT, which is a duplicate copy of the information, is just the ticket.

 An INT isn't required for an executable to load. However, if not present, the

executable cannot be bound. The Microsoft linker seems to always emit an INT, but

for a long time, the Borland linker (TLINK) did not. The Borland-created files could

not be bound.

 In early Microsoft linkers, the imports section wasn't all that special to the

linker. All the data that made up an executable's imports came from import

libraries. You could see this for yourself by running Dumpbin or PEDUMP on an

import library. You'd find sections with names like .idata$3 and .idata$4. The linker

simply followed its rules for combining sections, and all the structures and arrays

magically fell into place. A few years back, Microsoft introduced a new import

library format that creates significantly smaller import libraries at the cost of the

linker taking a more active role in creating the import data.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

9 of 21 9/7/20, 10:21 AM

Binding

 When an executable is bound (via the Bind program, for instance), the

IMAGE_THUNK_DATA structures in the IAT are overwritten with the actual address

of the imported function. The executable file on disk has the actual in-memory

addresses of APIs in other DLLs in its IAT. When loading a bound executable, the

Windows loader can bypass the step of looking up each imported API and writing it

to the IAT. The correct address is already there! This only happens if the stars align

properly, however. My May 2000 column contains some benchmarks on just how

much load-time speed increase you can get from binding executables.

 You probably have a healthy skepticism about the safety of executable binding.

After all, what if you bind your executable and the DLLs that it imports change?

When this happens, all the addresses in the IAT are invalid. The loader checks for

this situation and reacts accordingly. If the addresses in the IAT are stale, the loader

still has all the necessary information from the INT to resolve the addresses of the

imported APIs.

 Binding your programs at installation time is the best possible scenario. The

BindImage action of the Windows installer will do this for you. Alternatively,

IMAGEHLP.DLL provides the BindImageEx API. Either way, binding is good idea. If

the loader determines that the binding information is current, executables load

faster. If the binding information becomes stale, you're no worse off than if you

hadn't bound in the first place.

 One of the key steps in making binding effective is for the loader to determine if

the binding information in the IAT is current. When an executable is bound,

information about the referenced DLLs is placed into the executable. The loader

checks this information to make a quick determination of the binding validity. This

information wasn't added with the first implementation of binding. Thus, an

executable can be bound in the old way or the new way. The new way is what I'll

describe here.

 The key data structure in determining the validity of bound imports is an

IMAGE_BOUND_IMPORT_DESCRIPTOR. A bound executable contains a list of these

structures. Each IMAGE_BOUND_IMPORT_DESCRIPTOR structure represents the

time/date stamp of one imported DLL that has been bound against. The RVA of the

list is given by the IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT element in the

DataDirectory. The elements of the IMAGE_BOUND_IMPORT_DESCRIPTOR are:

TimeDateStamp, a DWORD that contains the time/date stamp of the imported

DLL.

OffsetModuleName, a WORD that contains an offset to a string with the name

of the imported DLL. This field is an offset (not an RVA) from the first

IMAGE_BOUND_IMPORT_DESCRIPTOR.

NumberOfModuleForwarderRefs, a WORD that contains the number of

IMAGE_BOUND_FORWARDER_REF structures that immediately follow this

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

10 of 21 9/7/20, 10:21 AM

structure. These structures are identical to the

IMAGE_BOUND_IMPORT_DESCRIPTOR except that the last WORD (the

NumberOfModuleForwarderRefs) is reserved.

 In a simple world, the IMAGE_BOUND_IMPORT_DESCRIPTORs for each

imported DLL would be a simple array. But, when binding against an API that's

forwarded to another DLL, the validity of the forwarded DLL has to be checked too.

Thus, the IMAGE_BOUND_FORWARDER_REF structures are interleaved with the

IMAGE_BOUND_IMPORT_DESCRIPTORs.

 Let's say you linked against HeapAlloc, which is forwarded to RtlAllocateHeap

in NTDLL. Then you ran BIND on your executable. In your EXE, you'd have an

IMAGE_BOUND_IMPORT_DESCRIPTOR for KERNEL32.DLL, followed by an

IMAGE_BOUND_FORWARDER_REF for NTDLL.DLL. Immediately following that

might be additional IMAGE_ BOUND_IMPORT_DESCRIPTORs for other DLLs you

imported and bound against.

Delayload Data

 Earlier I described how delayloading a DLL is a hybrid approach between an

implicit import and explicitly importing APIs via LoadLibrary and GetProcAddress.

Now let's take a look at the data structures and see how delayloading works.

 Remember that delayloading is not an operating system feature. It's

implemented entirely by additional code and data added by the linker and runtime

library. As such, you won't find many references to delayloading in WINNT.H.

However, you can see definite parallels between the delayload data and regular

imports data.

 The delayload data is pointed to by the

IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT entry in the DataDirectory. This is an

RVA to an array of ImgDelayDescr structures, defined in DelayImp.H from Visual

C++. Figure 7 shows the contents. There's one ImgDelayDescr for each delayload

imported DLL.

Figure 7 ImgDelayDescr Structure

Size Member Description

DWORD grAttrs The attributes for this structure. Currently,

the only flag defined is dlattrRva (1),

indicating that the address fields in the

structure should be treated as RVAs, rather

than virtual addresses.

RVA rvaDLLName An RVA to a string with the name of the

imported DLL. This string is passed to

LoadLibrary.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

11 of 21 9/7/20, 10:21 AM

RVA rvaHmod An RVA to an HMODULE-sized memory

location. When the Delayloaded DLL is

brought into memory, its HMODULE is

stored at this location.

RVA rvaIAT An RVA to the Import Address Table for this

DLL. This is the same format as a regular

IAT.

RVA rvaINT An RVA to the Import Name Table for this

DLL. This is the same format as a regular

INT.

RVA rvaBoundIAT An RVA of the optional bound IAT. An RVA to

a bound copy of an Import Address Table for

this DLL. This is the same format as a

regular IAT. Currently, this copy of the IAT is

not actually bound, but this feature may be

added in future versions of the BIND

program.

RVA rvaUnloadIAT An RVA of the optional copy of the original

IAT. An RVA to an unbound copy of an

Import Address Table for this DLL. This is

the same format as a regular IAT. Currently

always set to 0.

DWORD dwTimeStamp The date/time stamp of the delayload

imported DLL. Normally set to 0.

 The key thing to glean from ImgDelayDescr is that it contains the addresses of

an IAT and an INT for the DLL. These tables are identical in format to their regular

imports equivalent, only they're written to and read by the runtime library code

rather than the operating system. When you call an API from a delayloaded DLL for

the first time, the runtime calls LoadLibrary (if necessary), and then

GetProcAddress. The resulting address is stored in the delayload IAT so that future

calls go directly to the API.

 There is a bit of goofiness about the delayload data that needs explanation. In its

original incarnation in Visual C++ 6.0, all ImgDelayDescr fields containing

addresses used virtual addresses, rather than RVAs. That is, they contained actual

addresses where the delayload data could be found. These fields are DWORDs, the

size of a pointer on the x86.

 Now fast-forward to IA-64 support. All of a sudden, 4 bytes isn't enough to hold

a complete address. Ooops! At this point, Microsoft did the correct thing and

changed the fields containing addresses to RVAs. As shown in Figure 7, I've used

the revised structure definitions and names.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

12 of 21 9/7/20, 10:21 AM

 There is still the issue of determining whether an ImgDelayDescr is using RVAs

or virtual addresses. The structure has a field to hold flag values. When the "1" bit

of the grAttrs field is on, the structure members should be treated as RVAs. This is

the only option starting with Visual Studio® .NET and the 64-bit compiler. If that bit

in grAttrs is off, the ImgDelayDescr fields are virtual addresses.

The Resources Section

 Of all the sections within a PE, the resources are the most complicated to

navigate. Here, I'll describe just the data structures that are used to get to the raw

resource data such as icons, bitmaps, and dialogs. I won't go into the actual format

of the resource data since it's beyond the scope of this article.

 The resources are found in a section called .rsrc. The

IMAGE_DIRECTORY_ENTRY_RESOURCE entry in the DataDirectory contains the

RVA and size of the resources. For various reasons, the resources are organized in a

manner similar to a file system—with directory and leaf nodes.

 The resource pointer from the DataDirectory points to a structure of type

IMAGE_RESOURCE_DIRECTORY. The IMAGE_RESOURCE_DIRECTORY structure

contains unused Characteristic, TimeDateStamp, and version number fields. The

only interesting fields in an IMAGE_RESOURCE_DIRECTORY are the

NumberOfNamedEntries and the NumberOfIdEntries.

 Following each IMAGE_RESOURCE_DIRECTORY structure is an array of

IMAGE_RESOURCE_DIRECTORY_ENTRY structures. Adding the

NumberOfNamedEntries and NumberOfIdEntries fields from the

IMAGE_RESOURCE_DIRECTORY yields the count of

IMAGE_RESOURCE_DIRECTORY_ENTRYs. (If all these data structure names are

painful for you to read, let me tell you, it's also awkward writing about them!)

 A directory entry points to either another resource directory or to the data for

an individual resource. When the directory entry points to another resource

directory, the high bit of the second DWORD in the structure is set and the

remaining 31 bits are an offset to the resource directory. The offset is relative to the

beginning of the resource section, not an RVA.

 When a directory entry points to an actual resource instance, the high bit of the

second DWORD is clear. The remaining 31 bits are the offset to the resource

instance (for example, a dialog). Again, the offset is relative to the resource section,

not an RVA.

 Directory entries can be named or identified by an ID value. This is consistent

with resources in an .RC file where you can specify a name or an ID for a resource

instance. In the directory entry, when the high bit of the first DWORD is set, the

remaining 31 bits are an offset to the string name of the resource. If the high bit is

clear, the bottom 16 bits contain the ordinal identifier.

 Enough theory! Let's look at an actual resource section and decipher what it

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

13 of 21 9/7/20, 10:21 AM

means. Figure 8 shows abbreviated PEDUMP output for the resources in

ADVAPI32.DLL.

Figure 8 Resources from ADVAPI32.DLL

Resources (RVA: 6B000)

ResDir (0) Entries:03 (Named:01, ID:02) TimeDate:00000000

 ResDir (MOFDATA) Entries:01 (Named:01, ID:00) TimeDate:00000000

 ResDir (MOFRESOURCENAME) Entries:01 (Named:00, ID:01) TimeDate:00000000

 ID: 00000409 DataEntryOffs: 00000128

 DataRVA: 6B6F0 DataSize: 190F5 CodePage: 0

 ResDir (STRING) Entries:01 (Named:00, ID:01) TimeDate:00000000

 ResDir (C36) Entries:01 (Named:00, ID:01) TimeDate:00000000

 ID: 00000409 DataEntryOffs: 00000138

 DataRVA: 6B1B0 DataSize: 0053C CodePage: 0

 ResDir (RCDATA) Entries:01 (Named:00, ID:01) TimeDate:00000000

 ResDir (66) Entries:01 (Named:00, ID:01) TimeDate:00000000

 ID: 00000409 DataEntryOffs: 00000148

 DataRVA: 85908 DataSize: 0005C CodePage: 0

Each line that starts with "ResDir" corresponds to an

IMAGE_RESOURCE_DIRECTORY structure. Following "ResDir" is the name of the

resource directory, in parentheses. In this example, there are resource directories

named 0, MOFDATA, MOFRESOURCENAME, STRING, C36, RCDATA, and 66.

Following the name is the combined number of directory entries (both named and

by ID). In this example, the topmost directory has three immediate directory

entries, while all the other directories contain a single entry.

 In everyday use, the topmost directory is analogous to the root directory of a file

system. Each directory entry below the "root" is always a directory in its own right.

Each of these second-level directories corresponds to a resource type (strings

tables, dialogs, menus, and so on). Underneath each of the second-level "resource

type" directories, you'll find third-level subdirectories.

 There's a third-level subdirectory for each resource instance. For example, if

there were five dialogs, there would be a second-level DIALOG directory with five

directory entries beneath it. Each of the five directory entries would themselves be

a directory. The name of the directory entry corresponds to the name or ID of the

resource instance. Under each of these directory entries is a single item which

contains the offset to the resource data. Simple, no?

 If you learn more efficiently by reading code, be sure to check out the resource

dumping code in PEDUMP (see the February 2002 code download for this article).

Besides displaying all the resource directories and their entries, it also dumps out

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

14 of 21 9/7/20, 10:21 AM

several of the more common types of resource instances such as dialogs.

Base Relocations

 In many locations in an executable, you'll find memory addresses. When an

executable is linked, it's given a preferred load address. These memory addresses

are only correct if the executable loads at the preferred load address specified by

the ImageBase field in the IMAGE_FILE_HEADER structure.

 If the loader needs to load the DLL at another address, all the addresses in the

executable will be incorrect. This entails extra work for the loader. The May 2000

Under The Hood column (mentioned earlier) describes the performance hit when

DLLs have the same preferred load addresses and how the REBASE tool can help.

 The base relocations tell the loader every location in the executable that needs

to be modified if the executable doesn't load at the preferred load address. Luckily

for the loader, it doesn't need to know any details about how the address is being

used. It just knows that there's a list of locations that need to be modified in some

consistent way.

 Let's look at an x86-based example to make this clear. Say you have the

following instruction, which loads the value of a local variable (at address

0x0040D434) into the ECX register:

00401020: 8B 0D 34 D4 40 00 mov ecx,dword ptr [0x0040D434]

The instruction is at address 0x00401020 and is six bytes long. The first two bytes

(0x8B 0x0D) make up the opcode of the instruction. The remaining four bytes hold a

DWORD address (0x0040D434). In this example, the instruction is from an

executable with a preferred load address of 0x00400000. The global variable is

therefore at an RVA of 0xD434.

 If the executable does load at 0x00400000, the instruction can run exactly as is.

But let's say that the executable somehow gets loaded at address of 0x00500000. If

this happens, the last four bytes of the instruction need to be changed to

0x0050D434.

 How can the loader make this change? The loader compares the preferred and

actual load addresses and calculates a delta. In this case, the delta value is

0x00100000. This delta can be added to the value of the DWORD-sized address to

come up with the new address of the variable. In the previous example, there would

be a base relocation for address 0x00401022, which is the location of the DWORD

in the instruction.

 In a nutshell, base relocations are just a list of locations in an executable where

a delta value needs to be added to the existing contents of memory. The pages of an

executable are brought into memory only as they're needed, and the format of the

base relocations reflects this. The base relocations reside in a section called .reloc,

but the correct way to find them is from the DataDirectory using the

IMAGE_DIRECTORY_ENTRY_BASERELOC entry.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

15 of 21 9/7/20, 10:21 AM

 Base relocations are a series of very simple IMAGE_BASE_RELOCATION

structures. The VirtualAddress field contains the RVA of the memory range to which

the relocations belong. The SizeOfBlock field indicates how many bytes make up the

relocation information for this base, including the size of the

IMAGE_BASE_RELOCATION structure.

 Immediately following the IMAGE_BASE_RELOCATION structure is a variable

number of WORD values. The number of WORDs can be deduced from the

SizeOfBlock field. Each WORD consists of two parts. The top 4 bits indicate the type

of relocation, as given by the IMAGE_REL_BASED_xxx values in WINNT.H. The

bottom 12 bits are an offset, relative to the VirtualAddress field, where the

relocation should be applied.

 In the previous example of base relocations, I simplified things a bit. There are

actually multiple types of base relocations and methods for how they're applied. For

x86 executables, all base relocations are of type IMAGE_REL_BASED_HIGHLOW.

You will often see a relocation of type IMAGE_REL_BASED_ABSOLUTE at the end of

a group of relocations. These relocations do nothing, and are there just to pad

things so that the next IMAGE_BASE_RELOCATION is aligned on a 4-byte boundary.

 For IA-64 executables, the relocations seem to always be of type

IMAGE_REL_BASED_DIR64. As with x86 relocations, there will often be

IMAGE_REL_BASED_ABSOLUTE relocations used for padding. Interestingly,

although pages in IA-64 EXEs are 8KB, the base relocations are still done in 4KB

chunks.

 In Visual C++ 6.0, the linker omits relocations for EXEs when doing a release

build. This is because EXEs are the first thing brought into an address space, and

therefore are essentially guaranteed to load at the preferred load address. DLLs

aren't so lucky, so base relocations should always be left in, unless you have a

reason to omit them with the /FIXED switch. In Visual Studio .NET, the linker omits

base relocations for debug and release mode EXE files.

The Debug Directory

 When an executable is built with debug information, it's customary to include

details about the format of the information and where it is. The operating system

doesn't require this to run the executable, but it's useful for development tools. An

EXE can have multiple forms of debug information; a data structure known as the

debug directory indicates what's available.

 The DebugDirectory is found via the IMAGE_DIRECTORY_ENTRY_DEBUG slot

in the DataDirectory. It consists of an array of IMAGE_DEBUG_DIRECTORY

structures (see Figure 9), one for each type of debug information. The number of

elements in the debug directory can be calculated using the Size field in the

DataDirectory.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

16 of 21 9/7/20, 10:21 AM

Figure 9 Fields of IMAGE_DEBUG_DIRECTORY

Size Member Description

DWORD Characteristics Unused and set to 0.

DWORD TimeDateStamp The time/date stamp of this debug information (number of seconds

since 1/1/1970, GMT).

WORD MajorVersion The major version of this debug information. Unused.

WORD MinorVersion The minor version of this debug information. Unused.

DWORD Type The type of the debug information. The following types are the

most commonly encountered:

IMAGE_DEBUG_TYPE_COFF

IMAGE_DEBUG_TYPE_CODEVIEW // Including PDB files

IMAGE_DEBUG_TYPE_FPO // Frame pointer omission

IMAGE_DEBUG_TYPE_MISC // IMAGE_DEBUG_MISC

IMAGE_DEBUG_TYPE_OMAP_TO_SRC

IMAGE_DEBUG_TYPE_OMAP_FROM_SRC

IMAGE_DEBUG_TYPE_BORLAND // Borland format

DWORD SizeOfData The size of the debug data in this file. Doesn't count the size of

external debug files such as .PDBs.

DWORD AddressOfRawData The RVA of the debug data, when mapped into memory. Set to 0 if

the debug data isn't mapped in.

DWORD PointerToRawData The file offset of the debug data (not an RVA).

 By far, the most prevalent form of debug information today is the PDB file. The

PDB file is essentially an evolution of CodeView-style debug information. The

presence of PDB information is indicated by a debug directory entry of type

IMAGE_DEBUG_TYPE_CODEVIEW. If you examine the data pointed to by this entry,

you'll find a short CodeView-style header. The majority of this debug data is just a

path to the external PDB file. In Visual Studio 6.0, the debug header began with an

NB10 signature. In Visual Studio .NET, the header begins with an RSDS.

 In Visual Studio 6.0, COFF debug information can be generated with the

/DEBUGTYPE:COFF linker switch. This capability is gone in Visual Studio .NET.

Frame Pointer Omission (FPO) debug information comes into play with optimized

x86 code, where the function may not have a regular stack frame. FPO data allows

the debugger to locate local variables and parameters.

 The two types of OMAP debug information exist only for Microsoft programs.

Microsoft has an internal tool that reorganizes the code in executable files to

minimize paging. (Yes, more than the Working Set Tuner can do.) The OMAP

information lets tools convert between the original addresses in the debug

information and the new addresses after having been moved.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

17 of 21 9/7/20, 10:21 AM

 Incidentally, DBG files also contain a debug directory like I just described. DBG

files were prevalent in the Windows NT 4.0 era, and they contained primarily COFF

debug information. However, they've been phased out in favor of PDB files in

Windows XP.

The .NET Header

 Executables produced for the Microsoft .NET environment are first and

foremost PE files. However, in most cases normal code and data in a .NET file are

minimal. The primary purpose of a .NET executable is to get the .NET-specific

information such as metadata and intermediate language (IL) into memory. In

addition, a .NET executable links against MSCOREE.DLL. This DLL is the starting

point for a .NET process. When a .NET executable loads, its entry point is usually a

tiny stub of code. That stub just jumps to an exported function in MSCOREE.DLL

(_CorExeMain or _CorDllMain). From there, MSCOREE takes charge, and starts

using the metadata and IL from the executable file. This setup is similar to the way

apps in Visual Basic (prior to .NET) used MSVBVM60.DLL. The starting point for

.NET information is the IMAGE_COR20_HEADER structure, currently defined in

CorHDR.H from the .NET Framework SDK and more recent versions of WINNT.H.

The IMAGE_COR20_HEADER is pointed to by the

IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR entry in the DataDirectory.

Figure 10 shows the fields of an IMAGE_COR20_HEADER. The format of the

metadata, method IL, and other things pointed to by the IMAGE_COR20_HEADER

will be described in a subsequent article.

Figure 10 IMAGE_COR20_HEADER Structure

Type Member Description

DWORD cb Size of the header in bytes.

WORD MajorRuntimeVersion The minimum version of the runtime required to

first release of .NET, this value is 2.

WORD MinorRuntimeVersion The minor portion of the version. Currently 0.

IMAGE_DATA_DIRECTORY MetaData The RVA to the metadata tables.

DWORD Flags Flag values containing attributes for this image

defined as:

COMIMAGE_FLAGS_ILONLY // Image contains

 // is not required

COMIMAGE_FLAGS_32BITREQUIRED // Only ru

COMIMAGE_FLAGS_IL_LIBRARY

STRONGNAMESIGNED // Image is signed

COMIMAGE_FLAGS_TRACKDEBUGDATA // Causes

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

18 of 21 9/7/20, 10:21 AM

 // keep de

 // around

DWORD EntryPointToken Token for the MethodDef of the entry point for t

calls this method to begin managed execution in

IMAGE_DATA_DIRECTORY Resources The RVA and size of the .NET resources.

IMAGE_DATA_DIRECTORY StrongNameSignature The RVA of the strong name hash data.

IMAGE_DATA_DIRECTORY CodeManagerTable The RVA of the code manager table. A code man

required to obtain the state of a running progra

and track GC references).

IMAGE_DATA_DIRECTORY VTableFixups The RVA of an array of function pointers that ne

of unmanaged C++ vtables.

IMAGE_DATA_DIRECTORY ExportAddressTableJumps The RVA to an array of RVAs where export JMP

thunks allow managed methods to be exported

call them.

IMAGE_DATA_DIRECTORY ManagedNativeHeader For internal use of the .NET runtime in memory

TLS Initialization

 When using thread local variables declared with __declspec(thread), the

compiler puts them in a section named .tls. When the system sees a new thread

starting, it allocates memory from the process heap to hold the thread local

variables for the thread. This memory is initialized from the values in the .tls

section. The system also puts a pointer to the allocated memory in the TLS array,

pointed to by FS:[2Ch] (on the x86 architecture).

 The presence of thread local storage (TLS) data in an executable is indicated by

a nonzero IMAGE_DIRECTORY_ENTRY_TLS entry in the DataDirectory. If nonzero,

the entry points to an IMAGE_TLS_DIRECTORY structure, shown in Figure 11.

Figure 11 IMAGE_TLS_DIRECTORY Structure

Size Member Description

DWORD StartAddressOfRawData The beginning address of a range

of memory used to initialize a new

thread's TLS data in memory.

DWORD EndAddressOfRawData The ending address of the range

of memory used to initialize a new

thread's TLS data in memory.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

19 of 21 9/7/20, 10:21 AM

DWORD AddressOfIndex When the executable is brought

into memory and a .tls section is

present, the loader allocates a

TLS handle via TlsAlloc. It stores

the handle at the address given by

this field. The runtime library uses

this index to locate the thread

local data.

DWORD AddressOfCallBacks Address of an array of

PIMAGE_TLS_CALLBACK

function pointers. When a thread

is created or destroyed, each

function in the list is called. The

end of the list is indicated by a

pointer-sized variable set to 0. In

normal Visual C++ executables,

this list is empty.

DWORD SizeOfZeroFill The size in bytes of the

initialization data, beyond the

initialized data delimited by the

StartAddressOfRawData and

EndAddressOfRawData fields. All

per-thread data after this range is

initialized to 0.

DWORD Characteristics Reserved. Currently set to 0.

 It's important to note that the addresses in the IMAGE_TLS_DIRECTORY

structure are virtual addresses, not RVAs. Thus, they will get modified by base

relocations if the executable doesn't load at its preferred load address. Also, the

IMAGE_TLS_DIRECTORY itself is not in the .tls section; it resides in the .rdata

section.

Program Exception Data

 Some architectures (including the IA-64) don't use frame-based exception

handling, like the x86 does; instead, they used table-based exception handling in

which there is a table containing information about every function that might be

affected by exception unwinding. The data for each function includes the starting

address, the ending address, and information about how and where the exception

should be handled. When an exception occurs, the system searches through the

tables to locate the appropriate entry and handles it. The exception table is an array

of IMAGE_RUNTIME_FUNCTION_ENTRY structures. The array is pointed to by the

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

20 of 21 9/7/20, 10:21 AM

IMAGE_DIRECTORY_ENTRY_EXCEPTION entry in the DataDirectory. The format of

the IMAGE_RUNTIME_FUNCTION_ENTRY structure varies from architecture to

architecture. For the IA-64, the layout looks like this:

DWORD BeginAddress;

DWORD EndAddress;

DWORD UnwindInfoAddress;

The format of the UnwindInfoAddress data isn't given in WINNT.H. However, the

format can be found in Chapter 11 of the "IA-64 Software Conventions and Runtime

Architecture Guide" from Intel.

Wrap-up

 The Portable Executable format is a well-structured and relatively simple

executable format. It's particularly nice that PE files can be mapped directly into

memory so that the data structures on disk are the same as those Windows uses at

runtime. I've also been surprised at how well the PE format has held up with all the

various changes that have been thrown at it in the past 10 years, including the

transition to 64-bit Windows and .NET.

 Although I've covered many aspects of PE files, there are still topics that I

haven't gotten to. There are flags, attributes, and data structures that occur

infrequently enough that I decided not to describe them here. However, I hope that

this "big picture" introduction to PE files has made the Microsoft PE specifications

easier for you to understand.

Report Abuse | Powered By Google Sites

Comments

You do not have permission to add comments.

An In-Depth Look into the Win32 Portable Execut... http://www.delphibasics.info/home/delphibasicsart...

21 of 21 9/7/20, 10:21 AM

