
ContentsContents

 Home
 Ecosystem Roadmap
 Definitions
 Console APIs vs. Virtual Terminal

 About Character Mode Applications
 Input And Output Methods
 Console Code Pages
 Console Control Handlers
 Console Aliases
 Console Buffer Security and Access Rights
 Console Application Issues

 About Consoles
 Creation of a Console
 Attaching to a Console
 Closing a Console
 Console Handles
 Console Input Buffer
 Console Screen Buffers
 Console Modes
 Window And Screen Buffer Size
 Console Selection
 About Legacy Console Mode
 About Pseudoconsoles

 Console Developer's guide & API Reference
 Using The Console API

 High Level Console Input And Output Functions
 Using The High Level Input And Output Functions
 High Level Console Modes
 High Level Console I/O

 Low Level Console Input Functions
 Low Level Console Output Functions
 Low Level Console I/O
 Low Level Console Modes
 Reading And Writing Blocks Of Characters And Attributes
 Reading Input Buffer Events
 Clearing the screen
 Scrolling a Screen Buffer
 Scrolling a Screen Buffer's Contents
 Scrolling a Screen Buffer's Window
 Ctrl C And Ctrl Break Signals
 Ctrl Close Signal
 Registering a Control Handler Function
 Console Virtual Terminal Sequences
 Creating a Pseudoconsole Session

 Console API Functions
 AddConsoleAlias
 AllocConsole
 AttachConsole
 ClosePseudoConsole
 CreateConsoleScreenBuffer
 CreatePseudoConsole
 FillConsoleOutputAttribute
 FillConsoleOutputCharacter
 FlushConsoleInputBuffer
 FreeConsole
 GenerateConsoleCtrlEvent
 GetConsoleAlias
 GetConsoleAliases
 GetConsoleAliasesLength
 GetConsoleAliasExes
 GetConsoleAliasExesLength

 GetConsoleCP
 GetConsoleCursorInfo
 GetConsoleDisplayMode
 GetConsoleFontSize
 GetConsoleHistoryInfo
 GetConsoleMode
 GetConsoleOriginalTitle
 GetConsoleOutputCP
 GetConsoleProcessList
 GetConsoleScreenBufferInfo
 GetConsoleScreenBufferInfoEx
 GetConsoleSelectionInfo
 GetConsoleTitle
 GetConsoleWindow
 GetCurrentConsoleFont
 GetCurrentConsoleFontEx
 GetLargestConsoleWindowSize
 GetNumberOfConsoleInputEvents
 GetNumberOfConsoleMouseButtons
 GetStdHandle
 HandlerRoutine
 PeekConsoleInput
 ReadConsole
 ReadConsoleInput
 ReadConsoleOutput
 ReadConsoleOutputAttribute
 ReadConsoleOutputCharacter
 ResizePseudoConsole
 ScrollConsoleScreenBuffer
 SetConsoleActiveScreenBuffer
 SetConsoleCP
 SetConsoleCtrlHandler

 SetConsoleCursorInfo
 SetConsoleCursorPosition
 SetConsoleDisplayMode
 SetConsoleHistoryInfo
 SetConsoleMode
 SetConsoleOutputCP
 SetConsoleScreenBufferInfoEx
 SetConsoleScreenBufferSize
 SetConsoleTextAttribute
 SetConsoleTitle
 SetConsoleWindowInfo
 SetCurrentConsoleFontEx
 SetStdHandle
 WriteConsole
 WriteConsoleInput
 WriteConsoleOutput
 WriteConsoleOutputAttribute
 WriteConsoleOutputCharacter

 Console API Structures
 CONSOLE_HISTORY_INFO structure
 CONSOLE_READCONSOLE_CONTROL structure
 CONSOLE_SELECTION_INFO Structure
 FOCUS_EVENT_RECORD structure
 CONSOLE_SCREEN_BUFFER_INFOEX structure
 CONSOLE_SCREEN_BUFFER_INFO structure
 COORD structure
 INPUT_RECORD structure
 KEY_EVENT_RECORD structure
 MENU_EVENT_RECORD structure
 MOUSE_EVENT_RECORD structure
 SMALL_RECT structure
 WINDOW_BUFFER_SIZE_RECORD structure

 Console API Winevents

Welcome to the Windows Console documentation!
10/29/2020 • 2 minutes to read • Edit Online

In the sections on the left of this page, you'll find information about the concepts, APIs and related functions,

structures, etc. through which you can programmatically control and interact with the Windows Console.

https://github.com/Microsoft/Console-Docs/blob/master/docs/index.md

Windows Console and Terminal Ecosystem
Roadmap
12/1/2020 • 9 minutes to read • Edit Online

Definitions

Architecture

ClientClient

DeviceDevice

ServerServer

This document is a high-level roadmap of the Windows Console and Windows Terminal products. It covers:

How Windows Console and Windows Terminal fit into the ecosystem of command-line applications

across Windows and other operating systems.

A history and future roadmap of the products, features, and strategies that are part of building the

platform, as well as building for this platform.

The focus of the current console/terminal era at Microsoft is to bring a first-class terminal experience

directly to developers on the Windows platform and to phase out classic Windows Console APIs, replacing

them with virtual terminal sequences utilizing pseudoconsole. Windows TerminalWindows Terminal showcases this

transition into a first-class experience, inviting open source collaboration from the developer community,

supporting a full spectrum of mixing and matching of client command-line and terminal hosting

applications, and unifying the Windows ecosystem with all other platforms.

It is recommended to familiarize yourself with the definitions of common terminology used in this space

before proceeding. Common terminology includes: Command Line (or Console) applications, standard

handles (STDIN , STDOUT , STDERR), TTY and PTY devices, clients and servers, console subsystem, console

host, pseudoconsole, and terminal.

The general architecture of the system is in four parts: client, device, server, and terminal.

The client is a command-line application that uses a text-based interface to enable the user to enter

commands (rather than a mouse-based user interface), returning a text representation of the result. On

Windows, the Console API provides a communications layer between the client and the device. (This can

also be a standard console handle with device control APIs).

The device is an intermediate message-handling communications layer between two processes, the client

and the server. On Windows, this is the console driver. On other platforms, it is the TTY or PTY device. Other

devices like files, pipes, and sockets may be used as this communication channel if the entire transaction is

in plain text or contains virtual terminal sequences, but not with Windows Console APIs.

https://github.com/Microsoft/Console-Docs/blob/master/docs/ecosystem-roadmap.md
https://docs.microsoft.com/en-us/terminal/get-started
https://github.com/microsoft/terminal
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

TerminalTerminal

Further connectionsFurther connections

Microsoft products

Windows Console HostWindows Console Host

Windows TerminalWindows Terminal

Major historical milestones

Initial ImplementationInitial Implementation

The server interprets the requested API calls or messages from the client. On Windows in the classic

operating mode, the server also creates a user interface to present the output to the screen. The server

additionally collects input to send back in response messages to the client, via the driver, like a terminal

bundled in the same module. Using pseudoconsole mode, it instead is only a translator to present this

information in virtual terminal sequences to an attached terminal.

The terminal is the final layer providing graphical display and interactivity services to the user. It is

responsible for capturing input and encoding it as virtual terminal sequences, which eventually reach the

client's STDIN . It will also receive and decode the virtual terminal sequences that it receives back from the

client's STDOUT for presentation on the screen.

As an addendum, further connections can be performed by chaining applications that serve multiple roles

into one of the endpoints. For instance, an SSH session has two roles: it is a terminalterminal for the command-

line application running on one device, but it forwards all received information on to a clientclient role on

another device. This chaining can occur indefinitely across devices and contexts offering broad scenario

flexibility.

On non-Windows platforms, the ser verser ver and terminalterminal roles are a single unit because there is no need for a

translation compatibility layer between an API set and virtual terminal sequences.

All of the Microsoft Windows command-line products are now available on GitHub in an open source

repository, microsoft/terminal.

This is the traditional Windows user-interface for command-line applications. It handles all console API

servicing called from any attached command-line application. Windows Console also handles the graphical

user interface (GUI) representation on behalf of all of those applications. It is found in the system directory

as conhost.exe , or openconsole.exe in its open source form. It comes with the Windows operating system.

It can also be found in other Microsoft products built from the open source repository for a more up-to-

date implementation of the pseudoconsole infrastructure. Per the definitions above, it operates in either a

combined server-and-terminal role traditionally or a server-only role through the preferred pseudoconsole

infrastructure.

This is the new Windows interface for command-line applications. Windows Terminal serves as a first-party

example of using the pseudoconsole to separate the concerns between API servicing and text-based

application interfacing, much like all non-Windows platforms.

Windows Terminal is the flagship text-mode user interface for Windows. It demonstrates the capabilities of

the ecosystem and is driving Windows development toward unifying with other platforms. Windows

Terminal is also an example of how to build a robust and complex modern application that spans the

history and gamut of Windows APIs and frameworks. Per the definitions above, this product operates in a

terminal role.

The major historical milestones for the console subsystem are broken into implementation prior to 2014

and then moves into an overview of work performed since 2014, when the renewed focus on the

command-line was formed in the Windows 10 era.

https://github.com/microsoft/terminal
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

DBCS for CJKDBCS for CJK

Security/IsolationSecurity/Isolation

User Experience ImprovementsUser Experience Improvements

Virtual Terminal clientVirtual Terminal client

Virtual Terminal serverVirtual Terminal server

[1989-1990s][1989-1990s] The initial console host system was implemented as an emulation of the DOS environment

within the Windows operating system. Its code is entangled and cooperative with the Command Prompt,

cmd.exe , that is a representation of that DOS environment. The console host system code shares

responsibilities and privileges with the Command Prompt interpreter/shell. It also provides a base level of

services for other command-line utilities to perform services in a CMD-like manner.

[1997-1999][1997-1999] Around this time, DBCS support ("Double-byte character set") is introduced to support CJK

(Chinese, Japanese, and Korean) markets. This effort results in a bifurcation of many of the writing and

reading methods inside the console to provide both "western" versions to deal with single-byte characters

as well as an alternative representation for "eastern" versions where two bytes are required to represent

the vast array of characters. This bifurcation included the expanding representation of a cell in the console

environment to be either 1 or 2 cells wide, where 1 cell is narrow (taller than it is wide) and 2 cells is wide,

full-width, or otherwise a square in which typical Chinese, Japanese, and Korean ideographs can be

inscribed.

[2005-2009][2005-2009] With the console subsystem experience running inside the critical system process,

csrss.exe , connecting assorted client applications, at varying access levels, to a single super-critical and

privileged process was noticed as particularly dangerous. In this era, the console subsystem was split into

client, driver, and server applications. Each application could run in their own context, reducing the

responsibilities and privilege in each. This isolation increased the general robustness of the system, as any

failure in the console subsystem no longer affected other critical process functionality.

[2014-2016][2014-2016] After a long time of generally scattered maintenance of the console subsystem by assorted

teams across the organization, a new developer-focused team was formed to own and drive improvements

in the console. Improvements during this time included: line selection, smooth window resizing, reflowing

text, copy and paste, high DPI support, and a focus on Unicode, including the convergence of the split

between "western" and "eastern" storage and stream manipulation algorithms.

[2015-2017][2015-2017] With the arrival of the Windows Subsystem for Linux, Microsoft efforts to improve the

experience of Docker on Windows, and the adoption of OpenSSH as the premier command-line remote

execution technology, the initial implementations of virtual terminal sequences were introduced into the

console host. This allowed the existing console to act as the terminal, attached directly to those Linux-native

applications in their respective environments, rendering graphical and text attributes to the display and

returning user input in the appropriate dialect.

[2018][2018] Over the past twenty years, third-party alternatives for the inbox console host were created to offer

additional developer productivity, prominently centered in rich customizations and tabbed interfaces. These

applications still needed to run and hide the console host window. They attach as a secondary "client"

application to scrape out buffer information in polling loops as the primary command-line client

application operated. Their goal was to be a terminal, like on other platforms, but in the Windows world

where terminals were not replaceable.

In this time period, the pseudoconsole infrastructure was introduced. Pseudoconsole permits any

application to launch the console host in a non-interactive mode and become the final terminal interface

for the user. The main limitation in this effort was the continued compatibility promise of Windows in

servicing all published Windows Console APIs for the indefinite future, while providing a replacement

server-hosting interface that matched what is expected on all other platforms: virtual terminal sequences.

As such, this effort performed the mirror image of the client phase: the pseudoconsole projects what would

be displayed onto the screen as virtual terminal sequences for a delegated host and interprets replies into

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cmd
https://docs.microsoft.com/en-us/windows/win32/intl/double-byte-character-sets
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-introduction/docker-defined
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview

Roadmap for the future
Terminal applicationsTerminal applications

Client support libraryClient support library

Sequence PassthroughSequence Passthrough

Windows-format input sequences for client application consumption.

[2019-Now][2019-Now] This is the open source era for the console subsystem, focusing on the new Windows

Terminal. Announced during the Microsoft Build conference in May 2019, Windows Terminal is entirely on

GitHub at microsoft/terminal. Building the Windows Terminal application on top of the refined platform for

pseudoconsole will be the focus of this era, bringing a first-class terminal experience directly to developers

on the Windows platform.

Windows TerminalWindows Terminal intends not only to showcase the platform — including the WinUI interface

technology, the MSIX packaging model, and the C++/WinRT component architecture — but also as a

validation of the platform itself. Windows Terminal is driving the Windows organization to open and evolve

the app platform as necessary to continue to lift the productivity of developers. The Windows Terminal

unique set of power user and developer requirements drive the modern Windows platform requirements

for what those markets truly need from Windows.

Inside the Windows operating system, this includes retiring the classic console host user interface from its

default position in favor of Windows Terminal, ConPTY, and virtual terminal sequences.

Lastly, this era intends to offer full choice over the default experience, whether it is the Windows Terminal

product or any alternative terminals.

[Future][Future] With the support and documentation of virtual terminal sequences on the client side, we strongly

encourage Windows command-line utility developers to use virtual terminal sequences first over the

classic Windows APIs to gain the benefit of a unified ecosystem with all platforms. However, one significant

missing piece is that other platforms have a wide array of client-side helper libraries for handling input like

readline and graphical display like ncurses. This particular future road map element represents the

exploration of what the ecosystem offers and how we can accelerate the adoption of virtual terminal

sequences in Windows command-line applications over the classic Console API.

[Future][Future] The combination of virtual terminal client and server implementations allows the full mixing and

matching of client command-line and terminal hosting applications. This combination can speak to either

the classic Windows Console APIs or virtual terminal sequences, however, there is an overhead cost to

translating this into the classic compatible Windows method and then back into the more universal virtual

terminal method.

Once the market sufficiently adopts virtual terminal sequences and UTF-8 on Windows, the

conversion/interpretation job of the console host can be optionally disabled. The console host would then

become a simple API call servicer and relay from device calls to the hosting application via the

pseudoconsole. This change will increase performance and maximize the dialect of sequences that can be

spoken between the client application and the terminal. Through this change additional interactivity

scenarios would be enabled and (finally) bring the Windows world into alignment with the family of all

other platforms in the command-line application space.

https://github.com/microsoft/terminal
https://docs.microsoft.com/en-us/terminal/get-started
https://docs.microsoft.com/en-us/apps/winui/
https://docs.microsoft.com/en-us/msix/
https://docs.microsoft.com/en-us/uwp/cpp-and-winrt-apis/
https://docs.microsoft.com/en-us/terminal/get-started
https://devblogs.microsoft.com/commandline/windows-command-line-introducing-the-windows-pseudo-console-conpty/
https://tiswww.case.edu/php/chet/readline/rltop.html
https://invisible-island.net/ncurses/ncurses.html

Definitions
10/29/2020 • 4 minutes to read • Edit Online

Command Line Applications

Standard Handles

TTY/PTY

Clients and Servers

Console Subsystem

This document provides the definitions of specific words and phrases in this space and be used as reference

throughout this document set.

Command line applications, or sometimes called "console applications" and/or referred to as "clients" of the

console subsystem, are programs that operate mainly on a stream of text or character information. They generally

contain no user interface elements of their own and delegate both the output/display and the input/interaction

roles to a hosting application. Command line applications receive a stream of text on their standard input STDIN

handle which represents a user's keyboard input, process that information, then respond with a stream of text on

their standard output STDOUT for display back to the user's monitor. Of course, this has evolved over time for

additional input devices and remote scenarios, but the same basic philosophy remains the same: command-line

clients operate on text and someone else manages display/input.

The standard handles are a series, STDIN , STDOUT , and STDERR , introduced as part of a process space on startup.

They represent a place for information to be accepted on the way in and sent back on the way out (including a

special place to report errors out). For command-line applications, these must always exist when the application

starts. They are either inherited from the parent automatically, set explicitly by the parent, or created automatically

by the operating system if neither are specified/permitted. For classic Windows applications, these may be blank on

startup. However, they can be implicitly or explicitly inherited from the parent or allocated, attached, and freed

during runtime by the application itself.

Standard handles do not imply a specific type of attached device. In the case of command-line applications,

however, the device is most commonly a console device, file (from redirection in a shell), or a pipe (from a shell

connecting the output of one utility to the input of the next). It may also be a socket or any other type of device.

On non-Windows platforms, the TTY and PTY devices represent respectively either a true physical device or a

software-created pseudo-device that are the same concept as a Windows console session: a channel where

communication between a command-line client application and a server host interactivity application or physical

keyboard/display device can exchange text-based information.

Within this space, we're referring to "clients" as applications that do the work of processing information and

running commands. The "server" applications are those that are responsible for the user interface and are workers

to translate input and output into standard forms on behalf of the clients.

This is a catch-all term representing all modules affecting console and command-line operations. It specifically

refers to a flag that is a part of the Portable Executable header that specifies whether the starting application is

either a command-line/console application (and must have standard handles to start) or a windows application

(and does not need them).

https://github.com/Microsoft/Console-Docs/blob/master/docs/definitions.md
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Console Host

Pseudoconsole

Terminal

The console host, command-line client applications, the console driver, the console API surface, the pseudoconsole

infrastructure, terminals, configuration property sheets, the mechanisms and stubs inside the process loader, and

any utilities related to the workings of these forms of applications are considered to belong to this group.

The Windows Console Host, or conhost.exe , is both the server application for all of the Windows Console APIs as

well as the classic Windows user interface for working with command-line applications. The complete contents of

this binary, both the API server and the UI, historically belonged to Windows csrss.exe , a critical system process,

and was diverged for security and isolation purposes. Going forward, conhost.exe will continue to be responsible

for API call servicing and translation, but the user-interface components are intended to be delegated through a

pseudoconsole to a terminal.

This is the Windows simulation of a pseudoterminal or "PTY" from other platforms. It tries to match the general

interface philosophy of PTYs, providing a simple bidirectional channel of text based communication, but it

supplements it on Windows with a large compatibility layer to translate the breadth of Windows applications

written prior to this design philosophy change from the classic console API surface into the simple text channel

communication form. Terminals can use the pseudoconsole to take ownership of the user-interface elements away

from the console host, conhost.exe , while leaving it in charge of the API servicing, translation, and compatibility

efforts.

A terminal is the user-interface and interaction module for a command-line application. Today, it's a software

representation of what used to be historically a physical device with a display monitor, a keyboard, and a

bidirectional serial communication channel. It is responsible for gathering input from the user in a variety of forms,

translating it and encoding it and any special command information into a single text stream, and submitting it to

the PTY for transmission on to the STDIN channel of the command-line client application. It is also responsible for

receiving back information, via the PTY, that came from a client application's STDOUT channel, decoding any special

information in the payload, laying out all the text and additional commands, and presenting that graphically to the

end user.

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Classic Console APIs versus Virtual Terminal
Sequences
12/1/2020 • 8 minutes to read • Edit Online

Definitions

History

Cross-Platform Support

Remote AccessRemote Access

Our recommendation is to replace the classic Windows Console APIWindows Console API with vir tual terminalvir tual terminal

sequencessequences . This article will outline the difference between the two and discuss the reasons for our

recommendation.

The classic Windows Console APIWindows Console API surface is defined as the series of C language functional interfaces on

kernel32.dll with "Console" in the name.

Vir tual terminal sequencesVir tual terminal sequences is defined as a language of commands that's embedded in the standard

input and standard output streams. Virtual terminal sequences use non-printable escape characters for

signaling commands interleaved with normal printable text.

The Windows ConsoleWindows Console provides a broad API surface for client command-line applications to manipulate

both the output display buffer and the user input buffer. However, other non-Windows platforms have

never afforded this specific API-driven approach to their command-line environments, choosing instead

to use virtual terminal sequences embedded within the standard input and standard output streams. (For

a time, Microsoft supported this behavior too in early editions of DOS and Windows through a driver

called ANSI.SYS.)

By contrast, v ir tual terminal sequencesvir tual terminal sequences (in a variety of dialects) drive the command-line environment

operations for all other platforms. These sequences are rooted in an ECMA Standard and series of

extensions by many vendors tracing back to Digital Equipment Corporation and Tektronix terminals,

through to more modern and common software terminals, like xterm. Many extensions exist within the

virtual terminal sequence domain and some sequences are more widely supported than others, but it is

safe to say that the world has standardized on this as the command language for command-line

experiences with a well-known subset being supported by virtually every terminal and command-line

client application.

Vir tual terminal sequencesVir tual terminal sequences are natively supported across platforms, making terminal applications and

command-line utilities easily portable between versions and variations of operating systems, with the

exception of Windows.

By contrast, Windows Console APIsWindows Console APIs are only supported on Windows. An extensive adapter or

translation library must be written between Windows and virtual terminal, or vice-versa, when attempting

to port command-line utilities from one platform or another.

Vir tual terminal sequencesVir tual terminal sequences hold a major advantage for remote access. They require no additional

work to transport, or perform remote procedure calls, over what is required to set up a standard remote

command-line connection. Simply connecting an outbound and an inbound transport channel (or a single

bidirectional channel) over a pipe, socket, file, serial port, or any other device is sufficient to completely

https://github.com/Microsoft/Console-Docs/blob/master/docs/classic-vs-vt.md
https://www.ecma-international.org/publications/standards/Ecma-048.htm
https://invisible-island.net/xterm/

Separation of ConcernsSeparation of Concerns

Wrong-Way VerbsWrong-Way Verbs

Direct Window AccessDirect Window Access

carry all information required for an application speaking these sequences to a remote host.

On the contrary, the Windows Console APIsWindows Console APIs have only been accessible on the local machine and all

efforts to remote them would require building an entire remote calling and transport interface layer

beyond just a simple channel.

Some Windows Console APIsWindows Console APIs provide low-level access to the input and output buffers or convenience

functions for interactive command-lines. This might include aliases and command history programmed

within the console subsystem and host environment, instead of within the command-line client

application itself.

By contrast, other platformsother platforms make memory of the current state of the application and convenience

functionality the responsibility of the command-line utility or shell itself.

The Windows ConsoleWindows Console way of handling this responsibility in the console host and API makes it quicker

and easier to write a command-line application with these features, removing the responsibility of

remembering drawing state or handling editing convenience features. However, this makes it nearly

impossible to connect those activities remotely across platforms, versions, or scenarios due to variations

in implementations and availability. This way of handling responsibility also makes the final interactive

experience of these Windows command-line applications completely dependent on the console host's

implementation, priorities, and release cycle.

For example, advanced line editing features, like syntax highlighting and complex selection, are only

possible when a command-line application handles editing concerns itself. The console could never have

enough context to fully understand these scenarios in a broad manner like the client application can.

By contrast, other platforms use vir tual terminal sequencesvir tual terminal sequences to handle these activities and virtual

terminal communication itself through reusable client-side libraries, like readline and ncurses. The final

terminal is only responsible for displaying information and receiving input through that bidirectional

communication channel.

With Windows ConsoleWindows Console, some actions can be performed in the opposite-to-natural direction on the

input and output streams. This allows Windows command-line applications to avoid the concern of

managing their own buffers. It also allows Windows command-line apps to perform advanced operations,

like simulating/injecting input on behalf of a user, or reading back some of the history of what was

written.

While this provides additional power to Windows applications operating in a specific user-context on a

single machine, it also provides a vector to cross security and privilege-levels or domains when used in

certain scenarios. Such scenarios include operating between contexts on the same machine, or across

contexts to another machine or environment.

Other platforms, which use vir tual terminal sequencesvir tual terminal sequences , do not allow this activity. The intent of our

recommendation to transition from classic Windows Console to virtual terminal sequences is to converge

with this strategy for both interoperability and security reasons.

Windows Console API surfaceWindows Console API surface provides the exact window handle to the hosting window. This allows a

command-line utility to perform advanced window operations by reaching into the wide gamut of Win32

APIs permitted against a window handle. These Win32 APIs can manipulate the window state, frame, icon,

or other properties about the window.

By contrast, on other platforms with vir tual terminal sequencesvir tual terminal sequences , there is a narrow set of commands

that can be performed against the window. These commands can do things like changing the window size

https://tiswww.case.edu/php/chet/readline/rltop.html
https://invisible-island.net/ncurses/ncurses.html

UnicodeUnicode

NOTENOTE

Recommendations

Exceptions for using Windows Console APIsExceptions for using Windows Console APIs

or displayed title, but they must be done in the same band and under the same control as the remainder

of the stream.

As Windows has evolved, the security controls and restrictions on window handles have increased.

Additionally, the nature and existence of an application-addressable window handle on any specific user

interface element has evolved, especially with the increased support of device form factors and platforms.

This makes direct window access to command-line applications fragile as the platform and experiences

evolve.

UTF-8 is the accepted encoding for Unicode data across almost all modern platforms, as it strikes the right

balance between portability, storage size and processing time. However, Windows historically chose UTF-

16 as its primary encoding for Unicode data. Support for UTF-8 is increasing in Windows and use of these

Unicode formats does not preclude the usage of other encodings.

The Windows ConsoleWindows Console platform has supported and will continue to support all existing code pages and

encodings. Use UTF-16 for maximum compatibility across Windows versions and perform algorithmic

translation with UTF-8 if necessary. Increased support of UTF-8 is in progress for the console system.

UTF-16 support in the console can be utilized with no additional configuration via the W variant of all

console APIs and is a more likely choice for applications already well versed in UTF-16 through

communication with the wchar_t and W variant of other Microsoft and Windows platform functions and

products.

UTF-8 support in the console can be utilized via the A variant of Console APIs against console handles

after setting the codepage to 65001 or CP_UTF8 with the SetConsoleOutputCPSetConsoleOutputCP and SetConsoleCPSetConsoleCP

methods, as appropriate. Setting the code pages in advance is only necessary if the machine has not

chosen "Use Unicode UTF-8 for worldwide language support" in the settings for Non-Unicode

applications in the Region section of the Control Panel.

As of now, UTF-8 is supported fully on the standard output stream with the WriteConsoleWriteConsole and WriteFileWriteFile

methods. Support on the input stream varies depending on the input mode and will continue to improve over

time. Notably the default "cooked""cooked" modes on input do not fully support UTF-8 yet. The current status of this

work can be found at microsoft/terminal#7777microsoft/terminal#7777 on GitHub. The workaround is to use the algorithmically-

translatable UTF-16 for reading input through ReadConsoleWReadConsoleW or ReadConsoleInputWReadConsoleInputW until the outstanding

issues are resolved.

For all new and ongoing development on Windows, vir tual terminal sequences are recommendedvir tual terminal sequences are recommended

as the way of interacting with the terminal. This will converge Windows command-line client applications

with the style of application programming on all other platforms.

A limited subset of Windows Console APIs is still necessar ylimited subset of Windows Console APIs is still necessar y to establish the initial environment.

The Windows platform still differs from others in process, signal, device, and encoding handling:

The standard handles to a process will still be controlled with GetStdHandleGetStdHandle and SetStdHandleSetStdHandle.

Configuration of the console modes on a handle to opt in to Virtual Terminal Sequence support

will be handled with GetConsoleModeGetConsoleMode and SetConsoleModeSetConsoleMode.

Declaration of code page or UTF-8 support is conducted with SetConsoleOutputCPSetConsoleOutputCP and

SetConsoleCPSetConsoleCP methods.

https://msdn.microsoft.com/library/windows/desktop/aa365747
https://github.com/microsoft/terminal/issues/7777

Future planning and pseudoconsole

Some level of overall process management may be required with the AllocConsoleAllocConsole,

AttachConsoleAttachConsole and FreeConsoleFreeConsole to join or leave a console device session.

Signals and signal handling will continue to be conducted with SetConsoleCtr lHandlerSetConsoleCtr lHandler ,

HandlerRoutineHandlerRoutine, and GenerateConsoleCtr lEventGenerateConsoleCtr lEvent.

Communication with the console device handles can be conducted with WriteConsoleWriteConsole and

ReadConsoleReadConsole. These may also be leveraged through programming language runtimes in the

forms of: - C Runtime (CRT): Stream I/O like pr intfpr intf , scanfscanf , putcputc, getcgetc, or other levels of I/O

functions. - C++ Standard Library (STL): iostream like coutcout and cincin . - .NET Runtime:

System.Console like Console.WriteLineConsole.WriteLine.

Applications that must be aware of window size changes will still need to use ReadConsoleInputReadConsoleInput

to receive them interleaved with key events as ReadConsoleReadConsole alone will discard them.

Finding the window size must still be performed with GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo for

applications attempting to draw columns, grids, or fill the display. Window and buffer size will

match in a pseudoconsole session.

There are no plans to remove the Windows console APIs from the platform.

On the contrary, the Windows Console host has provided the pseudoconsolepseudoconsole technology to translate

existing Windows command-line application calls into virtual terminal sequences and forward them to

another hosting environment remotely or across platforms.

This translation is not perfect. It requires the console host window to maintain a simulated environment of

what Windows would have displayed to the user. It then projects a replica of this simulated environment

to the pseudoconsolepseudoconsole host. All Windows Console API calls are operated within the simulated

environment to serve the needs of the legacy command-line client application. Only the effects are

propagated onto the final host.

A command-line application desiring full compatibility across platforms and full support of all new

features and scenarios both on Windows and elsewhere is therefore recommended to move to virtual

terminal sequences and adjust the architecture of command-line applications to align with all platforms.

More information about this Windows transition for command-line applications can be found on our

ecosystem roadmap.

https://docs.microsoft.com/en-us/cpp/c-runtime-library/stream-i-o
https://docs.microsoft.com/en-us/cpp/c-runtime-library/input-and-output
https://docs.microsoft.com/en-us/cpp/standard-library/iostream
https://docs.microsoft.com/en-us/dotnet/api/system.console

About Character Mode Applications
10/29/2020 • 2 minutes to read • Edit Online

Character mode (or "command-line") applications:

1. [Optionally] Read data from standard input (stdin)

2. Do "work"

3. [Optionally] Write data to standard output (stdout) or standard error (stderr)

Character mode applications communicate with the end-user through a "console" (or "terminal") application. A

console converts user input from keyboard, mouse, touch-screen, pen, etc., and sends it to a character mode

application's stdin. A console may also display a character mode application's text output on the user's screen.

In Windows, the console is built-in and provides a rich API through which character mode applications can interact

with the user. However, in the recent era, the console team is encouraging all character mode applications to be

developed with virtual terminal sequences over the classic API calls for maximum compatibility between Windows

and other operating systems. More details on this transition and the trade offs involved can be found in our

discussion of classic APIs versus virtual terminal sequences.

Consoles

Input and Output Methods

Console Code Pages

Console Control Handlers

Console Aliases

Console Buffer Security and Access Rights

Console Application Issues

https://github.com/Microsoft/Console-Docs/blob/master/docs/about-character-mode-applications.md
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Input and Output Methods
10/29/2020 • 2 minutes to read • Edit Online

NOTENOTE

TIPTIP

There are two different approaches to console I/O, the choice of which depends on how much flexibility and

control an application needs. The high-level approach enables simple character stream I/O, but it limits access to a

console's input and screen buffers. The low-level approach requires that developers write more code and choose

among a greater range of functions, but it also gives an application more flexibility.

The low-level approach is not recommended for new and ongoing development. Applications needing functionality from the

low-level console I/O functions are encouraged to use vir tual terminal sequencesvir tual terminal sequences and explore our documentation on

both classic functions versus vir tual terminalclassic functions versus vir tual terminal and the ecosystem roadmapthe ecosystem roadmap.

An application can use the file I/O functions, ReadFileReadFile and WriteFileWriteFile, and the console functions, ReadConsoleReadConsole

and WriteConsoleWriteConsole, for high-level I/O that provides indirect access to a console's input and screen buffers. The

high-level input functions filter and process the data in a console's input buffer to return input as a stream of

characters, discarding mouse and buffer-resizing input. Similarly, the high-level output functions write a stream of

characters that are displayed at the current cursor location in a screen buffer. An application controls the way these

functions work by setting a console's I/O modes.

The low-level I/O functions provide direct access to a console's input and screen buffers, enabling an application to

access mouse and buffer-resizing input events and extended information for keyboard events. Low-level output

functions enable an application to read from or write to a specified number of consecutive character cells in a

screen buffer, or to read or write to rectangular blocks of character cells at a specified location in a screen buffer. A

console's input modes affect low-level input by enabling the application to determine whether mouse and buffer-

resizing events are placed in the input buffer. A console's output modes have no effect on low-level output.

The high-level and low-level I/O methods are not mutually exclusive, and an application can use any combination

of these functions. Typically, however, an application uses one approach or the other exclusively and we

recommend focusing on one particular paradigm for optimal results.

The ideal forward looking application will focus on the high-level methods and augment further needs with vir tualvir tual

terminal sequencesterminal sequences through the high-level I/O methods when necessary avoiding the use of low-level I/O functions

entirely.

The following topics describe the console modes and the high-level and low-level I/O functions.

Console Modes

High-Level Console I/O

High-Level Console Modes

High-Level Console Input and Output Functions

Console Virtual Terminal Sequences

Classic Functions versus Virtual Terminal Sequences

Ecosystem Roadmap

Low-Level Console I/O

Low-Level Console Modes

https://github.com/Microsoft/Console-Docs/blob/master/docs/input-and-output-methods.md
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Low-Level Console Input Functions

Low-Level Console Output Functions

Console Code Pages
10/29/2020 • 2 minutes to read • Edit Online

TIPTIP

A code page is a mapping of 256 character codes to individual characters. Different code pages include different

special characters, typically customized for a language or a group of languages.

Associated with each console are two code pages: one for input and one for output. A console uses its input code

page to translate keyboard input into the corresponding character value. It uses its output code page to translate

the character values written by the various output functions into the images displayed in the console window. An

application can use the SetConsoleCPSetConsoleCP and GetConsoleCPGetConsoleCP functions to set and retrieve a console's input code

pages and the SetConsoleOutputCPSetConsoleOutputCP and GetConsoleOutputCPGetConsoleOutputCP functions to set and retrieve its output code

pages.

The identifiers of the code pages available on the local computer are stored in the registry under the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage

For information about using the registry functions to determine the available code pages, see Registr yRegistr y .

It is recommended for all new and updated command-line applications to avoid code pages and use UnicodeUnicode. UTF-16

formatted text can be sent to the W family of console APIs. UTF-8 formatted text can be sent to the A family of console APIs

after ensuring the code page is first set to 65001 (CP_UTF8)65001 (CP_UTF8) with the SetConsoleCPSetConsoleCP and SetConsoleOutputCPSetConsoleOutputCP

functions.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-code-pages.md
https://msdn.microsoft.com/library/windows/desktop/ms724871
https://docs.microsoft.com/en-us/windows/win32/intl/unicode
https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Console Control Handlers
10/29/2020 • 2 minutes to read • Edit Online

Each console process has its own list of control handler functions that are called by the system when the process

receives a CTRL+C, CTRL+BREAK, or CTRL+CLOSE signal. Initially, the list of control handlers for each process

contains only a default handler function that calls the ExitProcessExitProcess function. A console process can add or remove

additional HandlerRoutineHandlerRoutine functions by calling the SetConsoleCtr lHandlerSetConsoleCtr lHandler function. This function does not

affect the lists of control handlers for other processes. When a console process receives any of the control signals,

it calls the handler functions on a last-registered, first-called basis until one of the handlers returns TRUETRUE. If none

of the handlers returns TRUETRUE, the default handler is called.

The function's dwCtrlType parameter identifies which control signal was received, and the return value indicates

whether the signal was handled.

A new thread is started inside the command-line client process to run the handler routines. More information on

the timeout values and action of this thread can be found in the HandlerRoutineHandlerRoutine function documentation.

For an example of a control handler function, see Registering a Control Handler Function.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-control-handlers.md
https://msdn.microsoft.com/library/windows/desktop/ms682658

Console Aliases
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

AddConsoleAlias(TEXT("test"),
 TEXT("cd \\<a_very_long_path>\\test"),
 TEXT("cmd.exe"));

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Console aliases are used to map source strings to target strings. For example, you can define a console alias that

maps "test" to "cd \a_very_long_path\test". When you type "test" at the command line, the console subsystem

expands the alias and executes the specified cd command.

To define a console alias, use Doskey.exeDoskey.exe to create a macro, or use the AddConsoleAliasAddConsoleAlias function. The following

example uses Doskey.exe :

doskey test=cd \doskey test=cd \a_very_long_path\test\test

The following call to AddConsoleAliasAddConsoleAlias creates the same console alias:

To add parameters to a console alias macro using Doskey.exe , use the batch parameters $1 through $9 . For

more information on the special codes that can be used in Doskey macro definitions, see the command-line help

for Doskey.exe or Doskey on TechNet.

All instances of an executable file running in the same console window share any defined console aliases. Multiple

instances of the same executable file running in different console windows do not share console aliases. Different

executable files running in the same console window do not share console aliases.

To retrieve the target string for a specified source string and executable file, use the GetConsoleAliasGetConsoleAlias function. To

retrieve all aliases for a specified executable file, use the GetConsoleAliasesGetConsoleAliases function. To retrieve the names of all

aliases for which console aliases have been defined, use the GetConsoleAliasExesGetConsoleAliasExes function.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-aliases.md
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/doskey
https://go.microsoft.com/fwlink/p/?linkid=196265

Console Buffer Security and Access Rights
10/29/2020 • 2 minutes to read • Edit Online

Console Object Security Descriptors

VA L UEVA L UE M EA N IN GM EA N IN G

GENERIC_READGENERIC_READ (0x80000000L) Requests read access to the console screen buffer, enabling
the process to read data from the buffer.

GENERIC_WRITEGENERIC_WRITE (0x40000000L) Requests write access to the console screen buffer, enabling
the process to write data to the buffer.

NOTENOTE

Wrong-Way Verbs

The Windows security model enables you to control access to console input buffers and console screen buffers.

For more information about security, see Access-Control Model.

You can specify a security descriptor for the console input and console screen buffers when you call the

CreateFileCreateFile or CreateConsoleScreenBufferCreateConsoleScreenBuffer function. If you specify NULLNULL , the object gets a default security

descriptor. The ACLs in the default security descriptor for a console buffer come from the primary or

impersonation token of the creator.

The handles returned by CreateFileCreateFile, CreateConsoleScreenBufferCreateConsoleScreenBuffer , and GetStdHandleGetStdHandle have the

GENERIC_READGENERIC_READ and GENERIC_WRITEGENERIC_WRITE access rights.

The valid access rights include the GENERIC_READGENERIC_READ and GENERIC_WRITEGENERIC_WRITE generic access rights.

Universal Windows Platform console appsUniversal Windows Platform console apps and those with a lower integrity levelintegrity level than the attached console will

be prohibited from both reading the output buffer and writing to the input buffer even if the security descriptors above

would normally permit it. Please see the Wrong Way VerbsWrong Way Verbs discussion below for more details.

Some operations to the console objects will be denied even if the object has a security descriptor that is stated

to specifically permit reading or writing. This specifically concerns command-line applications running in a

reduced-privilege context that are sharing a console session that was created by a command-line application in

a more permissive context.

The term "wrong-way verbs" is intended to apply to the operation that is the converse of the normal flow for

one of the console objects. Specifically, the normal flow for the output buffer is writing and the normal flow for

the input buffer is reading. The "wrong-way" would therefore be the reading of the output buffer or the writing

of the input buffer. These are functions that are described in the Low-Level Console I/O FunctionsLow-Level Console I/O Functions

documentation.

The two scenarios where this can be found are:

1. Universal Windows Platform console appsUniversal Windows Platform console apps . As these are cousins of other Universal Windows Platform

applications, they hold a promise that they are isolated from other applications and provide user

guarantees around the effects of their operation.

2. Any console application intentionally launched with a lower integrity levelintegrity level than the existing session which

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-buffer-security-and-access-rights.md
https://msdn.microsoft.com/library/windows/desktop/aa374876
https://msdn.microsoft.com/library/windows/desktop/aa379563
https://msdn.microsoft.com/library/windows/desktop/aa363858
https://msdn.microsoft.com/library/windows/desktop/aa363858
https://msdn.microsoft.com/library/windows/desktop/aa446632
https://docs.microsoft.com/en-us/windows/uwp/launch-resume/console-uwp
https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
https://docs.microsoft.com/en-us/windows/uwp/launch-resume/console-uwp
https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
mabidm
Highlight

can be accomplished with labeling or token manipulation during CreateProcesslabeling or token manipulation during CreateProcess .

If either of these scenarios is detected, the console will apply the "wrong-way verbs" flag to the command-line

application connection and reject calls to the following APIs to reduce the surface of communication between

the levels:

ReadConsoleOutput

ReadConsoleOutputCharacter

ReadConsoleOutputAttribute

WriteConsoleInput

Rejected calls will receive an access deniedaccess denied error code, the same as if the read or write permission were

denied by the security descriptors on the object.

https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/bb625960(v=msdn.10)

Console Application Issues
10/29/2020 • 2 minutes to read • Edit Online

The 8-bit console functions use the OEM code page. All other functions use the ANSI code page by default. This

means that strings returned by the console functions may not be processed correctly by the other functions and

vice versa. For example, if FindFirstFileAFindFirstFileA returns a string that contains certain extended ANSI characters,

WriteConsoleAWriteConsoleA will not display the string properly.

The best long-term solution for a console application is to use UnicodeUnicode. The console will accept UTF-16 encoding

on the W variant of the APIs or UTF-8 encoding on the A variant of the APIs after using SetConsoleCPSetConsoleCP and

SetConsoleOutputCPSetConsoleOutputCP to 65001 (CP_UTF8 constant) for the UTF-8 code page.

Barring that solution, a console application should use the SetFileApisToOEM function. That function changes

relevant file functions so that they produce OEM character set strings rather than ANSI character set strings.

The following are file functions:

CopyFile

CreateDirectory

CreateFile

CreateProcess

DeleteFile

FindFirstFile

FindNextFile

GetCurrentDirectory

GetDiskFreeSpace

GetDriveType

GetFileAttributes

GetFullPathName

GetModuleFileName

GetModuleHandle

GetSystemDirectory

GetTempFileName

GetTempPath

GetVolumeInformation

GetWindowsDirectory

LoadLibrary

LoadLibraryEx

MoveFile

MoveFileEx

OpenFile

RemoveDirectory

SearchPath

SetCurrentDirectory

SetFileAttributes

When dealing with command lines, a console application should obtain the command line in Unicode form and

convert it to OEM form, using the relevant character-to-OEM functions. Note, also, that argv uses the ANSI

character set.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-application-issues.md
https://docs.microsoft.com/en-us/windows/win32/intl/unicode
https://msdn.microsoft.com/library/windows/desktop/aa365534
https://msdn.microsoft.com/library/windows/desktop/aa363851
https://msdn.microsoft.com/library/windows/desktop/aa363855
https://msdn.microsoft.com/library/windows/desktop/aa363858
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://msdn.microsoft.com/library/windows/desktop/aa363915
https://msdn.microsoft.com/library/windows/desktop/aa364418
https://msdn.microsoft.com/library/windows/desktop/aa364428
https://msdn.microsoft.com/library/windows/desktop/aa364934
https://msdn.microsoft.com/library/windows/desktop/aa364935
https://msdn.microsoft.com/library/windows/desktop/aa364939
https://msdn.microsoft.com/library/windows/desktop/aa364944
https://msdn.microsoft.com/library/windows/desktop/aa364963
https://msdn.microsoft.com/library/windows/desktop/ms683197
https://msdn.microsoft.com/library/windows/desktop/ms683199
https://msdn.microsoft.com/library/windows/desktop/ms724373
https://msdn.microsoft.com/library/windows/desktop/aa364991
https://msdn.microsoft.com/library/windows/desktop/aa364992
https://msdn.microsoft.com/library/windows/desktop/aa364993
https://msdn.microsoft.com/library/windows/desktop/ms724454
https://msdn.microsoft.com/library/windows/desktop/ms684175
https://msdn.microsoft.com/library/windows/desktop/ms684179
https://msdn.microsoft.com/library/windows/desktop/aa365239
https://msdn.microsoft.com/library/windows/desktop/aa365240
https://msdn.microsoft.com/library/windows/desktop/aa365430
https://msdn.microsoft.com/library/windows/desktop/aa365488
https://msdn.microsoft.com/library/windows/desktop/aa365527
https://msdn.microsoft.com/library/windows/desktop/aa365530
https://msdn.microsoft.com/library/windows/desktop/aa365535

Consoles
10/29/2020 • 2 minutes to read • Edit Online

TIPTIP

A console is an application that provides I/O services to character-mode applications.

A console consists of an input buffer and one or more screen buffers. The input buffer contains a queue of input

records, each of which contains information about an input event. The input queue always includes key-press and

key-release events. It may also include mouse events (pointer movements and button presses and releases) and

events during which user actions affect the size of the active screen buffer. A screen buffer is a two-dimensional

array of character and color data for output in a console window. Any number of processes can share a console.

A broader idea of consoles and how they relate to terminals and command-line client applications can be found in the

ecosystem roadmapecosystem roadmap.

Creation of a Console

Attaching to a Console

Closing a Console

Console Handles

Console Input Buffer

Console Screen Buffers

Window and Screen Buffer Size

Console Selection

Scrolling the Screen Buffer

https://github.com/Microsoft/Console-Docs/blob/master/docs/consoles.md
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Creation of a Console
12/1/2020 • 3 minutes to read • Edit Online

The system creates a new console when it starts a console process, a character-mode process whose entry point is

the mainmain function. For example, the system creates a new console when it starts the command processor cmd.exe .

When the command processor starts a new console process, the user can specify whether the system creates a

new console for the new process or whether it inherits the command processor's console.

A process can create a console by using one of the following methods:

A graphical user interface (GUI) or console process can use the CreateProcessCreateProcess function with

CREATE_NEW_CONSOLECREATE_NEW_CONSOLE to create a console process with a new console. (By default, a console process

inherits its parent's console, and there is no guarantee that input is received by the process for which it was

intended.)

A GUI or console process that is not currently attached to a console can use the AllocConsoleAllocConsole function to

create a new console. (GUI processes are not attached to a console when they are created. Console processes

are not attached to a console if they are created using CreateProcessCreateProcess with DETACHED_PROCESSDETACHED_PROCESS .)

Typically, a process uses AllocConsoleAllocConsole to create a console when an error occurs requiring interaction with the

user. For example, a GUI process can create a console when an error occurs that prevents it from using its normal

graphical interface, or a console process that does not normally interact with the user can create a console to

display an error.

A process can also create a console by specifying the CREATE_NEW_CONSOLECREATE_NEW_CONSOLE flag in a call to CreateProcessCreateProcess .

This method creates a new console that is accessible to the child process but not to the parent process. Separate

consoles enable both parent and child processes to interact with the user without conflict. If this flag is not

specified when a console process is created, both processes are attached to the same console, and there is no

guarantee that the correct process will receive the input intended for it. Applications can prevent confusion by

creating child processes that do not inherit handles of the input buffer, or by enabling only one child process at a

time to inherit an input buffer handle while preventing the parent process from reading console input until the

child has finished.

Creating a new console results in a new console window, as well as separate I/O screen buffers. The process

associated with the new console uses the GetStdHandleGetStdHandle function to get the handles of the new console's input

and screen buffers. These handles enable the process to access the console.

When a process uses CreateProcessCreateProcess , it can specify a STARTUPINFOSTARTUPINFO structure, whose members control the

characteristics of the first new console (if any) created for the child process. The STARTUPINFOSTARTUPINFO structure specified

in the call to CreateProcessCreateProcess affects a console created if the CREATE_NEW_CONSOLECREATE_NEW_CONSOLE flag is specified. It also

affects a console created if the child process subsequently uses AllocConsoleAllocConsole. The following console

characteristics can be specified:

Size of the new console window, in character cells

Location of the new console window, in screen pixel coordinates

Size of the new console's screen buffer, in character cells

Text and background color attributes of the new console's screen buffer

Display name for the title bar of the new console's window

The system uses default values if the STARTUPINFOSTARTUPINFO values are not specified. A child process can use the

GetStar tupInfoGetStar tupInfo function to determine the values in its STARTUPINFOSTARTUPINFO structure.

A process cannot change the location of its console window on the screen, but the following console functions are

https://github.com/Microsoft/Console-Docs/blob/master/docs/creation-of-a-console.md
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://msdn.microsoft.com/library/windows/desktop/ms686331
https://msdn.microsoft.com/library/windows/desktop/ms686331
https://msdn.microsoft.com/library/windows/desktop/ms683230
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo Retrieves the window size, screen buffer size, and color
attributes.

SetConsoleWindowInfoSetConsoleWindowInfo Changes the size of the console window.

SetConsoleScreenBufferSizeSetConsoleScreenBufferSize Changes the size of the console screen buffer.

SetConsoleTextAttributeSetConsoleTextAttribute Sets the color attributes.

SetConsoleTitleSetConsoleTitle Sets the console window title.

GetConsoleTitleGetConsoleTitle Retrieves the console window title.

available to set or retrieve the other properties specified in the STARTUPINFOSTARTUPINFO structure.

A process can use the FreeConsoleFreeConsole function to detach itself from an inherited console or from a console created

by AllocConsoleAllocConsole.

A process can use the AttachConsoleAttachConsole function to attach itself to another existing console session after using

FreeConsoleFreeConsole to detach from its own session (or if there is otherwise no attached session).

https://msdn.microsoft.com/library/windows/desktop/ms686331

Attaching to a Console
10/29/2020 • 2 minutes to read • Edit Online

A process can use the AttachConsoleAttachConsole function to attach to a console as a client. A process can be attached to one

console.

A console can have many processes attached to it. To retrieve a list of the processes attached to a console, call the

GetConsoleProcessListGetConsoleProcessList function.

To attach as a server, see information about PseudoconsolesPseudoconsoles .

https://github.com/Microsoft/Console-Docs/blob/master/docs/attaching-to-a-console.md
mabidm
Highlight

Closing a Console
10/29/2020 • 2 minutes to read • Edit Online

A process can use the FreeConsoleFreeConsole function to detach itself from its console. If other processes share the console,

the console is not destroyed, but the process that called FreeConsoleFreeConsole cannot refer to it. After calling

FreeConsoleFreeConsole, the process can use AllocConsoleAllocConsole to create a new console or AttachConsoleAttachConsole to attach to another

console.

A console is closed when the last process attached to it terminates or calls FreeConsoleFreeConsole.

https://github.com/Microsoft/Console-Docs/blob/master/docs/closing-a-console.md
mabidm
Highlight

Console Handles
12/1/2020 • 3 minutes to read • Edit Online

A console process uses handles to access the input and screen buffers of its console. A process can use the

GetStdHandleGetStdHandle, CreateFileCreateFile, or CreateConsoleScreenBufferCreateConsoleScreenBuffer function to open one of these handles.

The GetStdHandleGetStdHandle function provides a mechanism for retrieving the standard input (STDIN), standard output (

STDOUT), and standard error (STDERR) handles associated with a process. During console creation, the system

creates these handles. Initially, STDIN is a handle to the console's input buffer, and STDOUT and STDERR are handles

of the console's active screen buffer. However, the SetStdHandleSetStdHandle function can redirect the standard handles by

changing the handle associated with STDIN , STDOUT , or STDERR . Because the parent's standard handles are

inherited by any child process, subsequent calls to GetStdHandleGetStdHandle return the redirected handle. A handle returned

by GetStdHandleGetStdHandle may, therefore, refer to something other than console I/O. For example, before creating a child

process, a parent process can use SetStdHandleSetStdHandle to set a pipe handle to be the STDIN handle that is inherited by

the child process. When the child process calls GetStdHandleGetStdHandle, it gets the pipe handle. This means that the parent

process can control the standard handles of the child process. The handles returned by GetStdHandleGetStdHandle have

GENERIC_READ | GENERIC_WRITE access unless SetStdHandleSetStdHandle has been used to set the standard handle to have

lesser access.

The value of the handles returned by GetStdHandleGetStdHandle are not 0, 1, and 2, so the standard predefined stream

constants in Stdio.h (STDIN , STDOUT , and STDERR) cannot be used in functions that require a console handle.

The CreateFileCreateFile function enables a process to get a handle to its console's input buffer and active screen buffer,

even if STDIN and STDOUT have been redirected. To open a handle to a console's input buffer, specify the CONIN$

value in a call to CreateFileCreateFile. Specify the CONOUT$ value in a call to CreateFileCreateFile to open a handle to a console's

active screen buffer. CreateFileCreateFile enables you to specify the read/write access of the handle that it returns.

The CreateConsoleScreenBufferCreateConsoleScreenBuffer function creates a new screen buffer and returns a handle. This handle can be

used in any function that accepts a handle to console output. The new screen buffer is not active (displayed) until

its handle is specified in a call to the SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer function. Note that changing the active

screen buffer does not affect the handle returned by GetStdHandleGetStdHandle. Similarly, using SetStdHandleSetStdHandle to change the

STDOUT handle does not affect the active screen buffer.

Console handles returned by CreateFileCreateFile and CreateConsoleScreenBufferCreateConsoleScreenBuffer can be used in any of the console

functions that require a handle to a console's input buffer or of a console screen buffer. Handles returned by

GetStdHandleGetStdHandle can be used by the console functions if they have not been redirected to refer to something other

than console I/O. If a standard handle has been redirected to refer to a file or a pipe, however, the handle can only

be used by the ReadFileReadFile and WriteFileWriteFile functions. GetFileTypeGetFileType can assist in determining what device type the

handle refers to. A console handle presents as FILE_TYPE_CHAR .

A process can use the DuplicateHandleDuplicateHandle function to create a duplicate console handle that has different access or

inheritability from the original handle. Note, however, that a process can create a duplicate console handle only for

its own use. This differs from other handle types (such as file, pipe, or mutex objects), for which DuplicateHandleDuplicateHandle

can create a duplicate that is valid for a different process. Access to a console must be shared during creation of the

other process or may be requested by the other process through the AttachConsoleAttachConsole mechanism.

To close a console handle, a process can use the CloseHandleCloseHandle function.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-handles.md
https://msdn.microsoft.com/library/windows/desktop/aa363858
https://msdn.microsoft.com/library/windows/desktop/aa363858
https://msdn.microsoft.com/library/windows/desktop/aa363858
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfiletype
https://msdn.microsoft.com/library/windows/desktop/ms724251
https://msdn.microsoft.com/library/windows/desktop/ms724211
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Console Input Buffer
10/29/2020 • 4 minutes to read • Edit Online

Keyboard Events

Mouse Events

Each console has an input buffer that contains a queue of input event records. When a console's window has the

keyboard focus, a console formats each input event (such as a single keystroke, a movement of the mouse, or a

mouse-button click) as an input record that it places in the console's input buffer.

Applications can access a console's input buffer indirectly by using the high-level console I/O functions, or directly

by using the low-level console input functions. The high-level input functions filter and process the data in the

input buffer, returning only a stream of input characters. The low-level input functions enable applications to read

input records directly from a console's input buffer, or to place input records into the input buffer. To open a handle

to a console's input buffer, specify the CONIN$CONIN$ value in a call to the CreateFileCreateFile function.

An input record is a structure containing information about the type of event that occurred (keyboard, mouse,

window resizing, focus, or menu event) as well as specific details about the event. The EventTypeEventType member in an

INPUT_RECORDINPUT_RECORD structure indicates which type of event is contained in the record.

Focus and menu events are placed in a console's input buffer for internal use by the system and should be ignored

by applications.

Keyboard events are generated when any key is pressed or released; this includes control keys. However, the ALT

key has special meaning to the system when pressed and released without being combined with another character,

and it is not passed through to the application. Also, the CTRL+C key combination is not passed through if the

input handle is in processed mode.

If the input event is a keystroke, the EventEvent member in INPUT_RECORDINPUT_RECORD is a KEY_EVENT_RECORDKEY_EVENT_RECORD structure

containing the following information:

A Boolean value indicating whether the key was pressed or released.

A repeat count that can be greater than one when a key is held down.

The virtual-key code, identifying the given key in a device-independent manner.

The virtual-scan code, indicating the device-dependent value generated by the keyboard hardware.

The translated Unicode™ or ANSI character.

A flag variable indicating the state of the control keys (the ALT, CTRL, SHIFT, NUM LOCK, SCROLL LOCK, and

CAPS LOCK keys) and indicating whether an enhanced key was pressed. Enhanced keys for the IBM® 101-key

and 102-key keyboards are the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to

the left of the numeric keypad and the divide (/) and ENTER keys in the numeric keypad.

Mouse events are generated whenever the user moves the mouse or presses or releases one of the mouse

buttons. Mouse events are placed in the input buffer only if the following conditions are met:

The console input mode is set to ENABLE_MOUSE_INPUTENABLE_MOUSE_INPUT (the default mode).

The console window has the keyboard focus.

The mouse pointer is within the borders of the console's window.

If the input event is a mouse event, the EventEvent member in INPUT_RECORDINPUT_RECORD is a MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD

structure containing the following information:

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-input-buffer.md
https://msdn.microsoft.com/library/windows/desktop/aa363858
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

NOTENOTE

Buffer-Resizing Events

The coordinates of the mouse pointer in terms of the character-cell row and column in the console screen

buffer's coordinate system.

A flag variable indicating the state of the mouse buttons.

A flag variable indicating the state of the control keys (ALT, CTRL, SHIFT, NUM LOCK, SCROLL LOCK, and CAPS

LOCK) and indicating whether an enhanced key was pressed. Enhanced keys for the IBM 101-key and 102-key

keyboards are the INS, DEL, HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the

numeric keypad and the divide (/) and ENTER keys in the numeric keypad.

A flag variable indicating whether the event was a normal button-press or button-release event, a mouse

movement event, or the second click of a double-click event.

The mouse position coordinates are in terms of the console screen buffer, not the console window. The screen buffer may

have been scrolled with respect to the window, so the upper left corner of the window is not necessarily the (0,0) coordinate

of the console screen buffer. To determine the coordinates of the mouse relative to the coordinate system of the window,

subtract the window origin coordinates from the mouse position coordinates. Use the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

function to determine the window origin coordinates.

The dwButtonStatedwButtonState member of the MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD structure has a bit corresponding to each mouse

button. The bit is 1 if the button is down and 0 if the button is up. A button-release event is detected by a 0 value

for the dwEventFlagsdwEventFlags member of MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD and a change in a button's bit from 1 to 0. The

GetNumberOfConsoleMouseButtonsGetNumberOfConsoleMouseButtons function retrieves the number of buttons on the mouse.

A console window's menu enables the user to change the size of the active screen buffer ; this change generates a

buffer-resizing event. Buffer-resizing events are placed in the input buffer if the console's input mode is set to

ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT (that is, the default mode is disabled).

If the input event is a buffer-resizing event, the EventEvent member of INPUT_RECORDINPUT_RECORD is a

WINDOW_BUFFER_SIZE_RECORDWINDOW_BUFFER_SIZE_RECORD structure containing the new size of the console screen buffer, expressed in

character-cell columns and rows.

If the user reduces the size of the console screen buffer, any data in the discarded portion of the buffer is lost.

Changes to the console screen buffer size as a result of application calls to the SetConsoleScreenBufferS izeSetConsoleScreenBufferS ize

function are not generated as buffer-resizing events.

mabidm
Highlight

Console Screen Buffers
12/1/2020 • 5 minutes to read • Edit Online

TIPTIP

Cursor Appearance and Position

A screen buffer is a two-dimensional array of character and color data for output in a console window. A console

can have multiple screen buffers. The active screen buffer is the one that is displayed on the screen.

The system creates a screen buffer whenever it creates a new console. To open a handle to a console's active

screen buffer, specify the CONOUT$CONOUT$ value in a call to the CreateFileCreateFile function. A process can use the

CreateConsoleScreenBufferCreateConsoleScreenBuffer function to create additional screen buffers for its console. A new screen buffer is

not active until its handle is specified in a call to the SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer function. However, screen

buffers can be accessed for reading and writing whether they are active or inactive.

Each screen buffer has its own two-dimensional array of character information records. The data for each

character is stored in a CHAR_INFOCHAR_INFO structure that specifies the Unicode or ANSI character and the foreground

and background colors in which that character is displayed.

A number of properties associated with a screen buffer can be set independently for each screen buffer. This

means that changing the active screen buffer can have a dramatic effect on the appearance of the console window.

The properties associated with a screen buffer include:

Screen buffer size, in character rows and columns.

Text attributes (foreground and background colors for displaying text to be written by the WriteFileWriteFile or

WriteConsoleWriteConsole function).

Window size and location (the rectangular region of the console screen buffer that is displayed in the console

window).

Cursor position, appearance, and visibility.

Output modes (ENABLE_PROCESSED_OUTPUTENABLE_PROCESSED_OUTPUT and ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT). For more

information about console output modes, see High-Level Console Modes.

When a screen buffer is created, it contains space characters in every position. Its cursor is visible and positioned

at the buffer's origin (0,0), and the window is positioned with its upper left corner at the buffer's origin. The size of

the console screen buffer, the window size, the text attributes, and the appearance of the cursor are determined by

the user or by the system defaults. To retrieve the current values of the various properties associated with the

console screen buffer, use the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo, GetConsoleCursorInfoGetConsoleCursorInfo, and GetConsoleModeGetConsoleMode

functions.

Applications that change any of the console screen buffer properties should either create their own screen buffer

or save the state of the inherited screen buffer during startup and restore it at exit. This cooperative behavior is

required to ensure that other applications sharing the same console session are not impacted by the changes.

It is recommended to use the alternate buffer modealternate buffer mode going forward, if possible, instead of creating a second screen buffer

for this purpose. Alternate buffer modeAlternate buffer mode offers increased compatibility across remote devices and with other platforms.

Please see our discussion on classic console APIs versus vir tual terminalclassic console APIs versus vir tual terminal for more information.

A screen buffer's cursor can be visible or hidden. When it is visible, its appearance can vary, ranging from

completely filling a character cell to appearing as a horizontal line at the bottom of the cell. To retrieve information

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-screen-buffers.md
https://msdn.microsoft.com/library/windows/desktop/aa363858
https://docs.microsoft.com/en-us/windows/console/char-info-str
https://msdn.microsoft.com/library/windows/desktop/aa365747
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

NOTENOTE

Character Attributes

AT T RIB UT EAT T RIB UT E M EA N IN GM EA N IN G

FOREGROUND_BLUEFOREGROUND_BLUE Text color contains blue.

FOREGROUND_GREENFOREGROUND_GREEN Text color contains green.

FOREGROUND_REDFOREGROUND_RED Text color contains red.

FOREGROUND_INTENSITYFOREGROUND_INTENSITY Text color is intensified.

BACKGROUND_BLUEBACKGROUND_BLUE Background color contains blue.

BACKGROUND_GREENBACKGROUND_GREEN Background color contains green.

BACKGROUND_REDBACKGROUND_RED Background color contains red.

BACKGROUND_INTENSITYBACKGROUND_INTENSITY Background color is intensified.

COMMON_LVB_LEADING_BYTECOMMON_LVB_LEADING_BYTE Leading byte.

COMMON_LVB_TRAILING_BYTECOMMON_LVB_TRAILING_BYTE Trailing byte.

COMMON_LVB_GRID_HORIZONTALCOMMON_LVB_GRID_HORIZONTAL Top horizontal.

COMMON_LVB_GRID_LVERTICALCOMMON_LVB_GRID_LVERTICAL Left vertical.

COMMON_LVB_GRID_RVERTICALCOMMON_LVB_GRID_RVERTICAL Right vertical.

COMMON_LVB_REVERSE_VIDEOCOMMON_LVB_REVERSE_VIDEO Reverse foreground and background attributes.

about the appearance and visibility of the cursor, use the GetConsoleCursorInfoGetConsoleCursorInfo function. This function reports

whether the cursor is visible and describes the appearance of the cursor as the percentage of a character cell that

it fills. To set the appearance and visibility of the cursor, use the SetConsoleCursorInfoSetConsoleCursorInfo function.

Characters written by the high-level console I/O functions are written at the current cursor location, advancing the

cursor to the next location. To determine the current cursor position in the coordinate system of a screen buffer,

use GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo. You can use SetConsoleCursorPositionSetConsoleCursorPosition to set the cursor position and,

thereby, control the placement of text that is written or echoed by the high-level I/O functions. If you move the

cursor, text at the new cursor location is overwritten.

Using the low-level functions to find the cursor position is discouraged. It is recommended to use virtual terminal sequences

to query this position if necessary for advanced layouts. More information about preferring virtual terminal sequences can

be found in the classic functions versus vir tual terminalclassic functions versus vir tual terminal document.

The position, appearance, and visibility of the cursor are set independently for each screen buffer.

Character attributes can be divided into two classes: color and DBCS. The following attributes are defined in the

WinCon.h header file.

COMMON_LVB_UNDERSCORECOMMON_LVB_UNDERSCORE Underscore.

AT T RIB UT EAT T RIB UT E M EA N IN GM EA N IN G

NOTENOTE

Font Attributes

NOTENOTE

The foreground attributes specify the text color. The background attributes specify the color used to fill the cell's

background. The other attributes are used with DBCS.

An application can combine the foreground and background constants to achieve different colors. For example,

the following combination results in bright cyan text on a blue background.

FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_INTENSITY | BACKGROUND_BLUE

If no background constant is specified, the background is black, and if no foreground constant is specified, the text

is black. For example, the following combination produces black text on a white background.

BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_RED

Each screen buffer character cell stores the color attributes for the colors used in drawing the foreground (text)

and background of that cell. An application can set the color data for each character cell individually, storing the

data in the Attr ibutesAttr ibutes member of the CHAR_INFOCHAR_INFO structure for each cell. The current text attributes of each

screen buffer are used for characters subsequently written or echoed by the high-level functions.

An application can use GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo to determine the current text attributes of a screen buffer

and the SetConsoleTextAttr ibuteSetConsoleTextAttr ibute function to set the character attributes. Changing a screen buffer's attributes

does not affect the display of characters previously written. These text attributes do not affect characters written

by the low-level console I/O functions (such as the WriteConsoleOutputWriteConsoleOutput or WriteConsoleOutputCharacterWriteConsoleOutputCharacter

function), which either explicitly specify the attributes for each cell that is written or leave the attributes

unchanged.

Using the low-level functions to manipulate default and specific text attributes is discouraged. It is recommended to use

virtual terminal sequences to set text attributes. More information about preferring virtual terminal sequences can be found

in the classic functions versus vir tual terminalclassic functions versus vir tual terminal document.

The GetCurrentConsoleFontGetCurrentConsoleFont function retrieves information about the current console font. The information

stored in the CONSOLE_FONT_INFOCONSOLE_FONT_INFO structure includes the width and height of each character in the font.

The GetConsoleFontSizeGetConsoleFontSize function retrieves the size of the font used by the specified console screen buffer.

Using functions to find and manipulate font information is discouraged. It is recommended to operate command-line

applications in a font neutral manner to ensure cross-platform compatibility as well as compatibility with host environments

that allow the user to customize the font. More information user preferences and host environments including terminals,

please see the ecosystem roadmapecosystem roadmap.

https://msdn.microsoft.com/library/windows/desktop/dd317794
https://docs.microsoft.com/en-us/windows/console/char-info-str
https://docs.microsoft.com/en-us/windows/console/console-font-info-str

Console Modes
10/29/2020 • 2 minutes to read • Edit Online

Associated with each console input buffer is a set of input modes that affects input operations. Similarly, each

console screen buffer has a set of output modes that affects output operations. The input modes can be divided

into two groups: those that affect the high-level input functions and those that affect the low-level input functions.

The output modes only affect applications that use the high-level output functions.

The GetConsoleModeGetConsoleMode function reports the current input mode of a console's input buffer or the current output

mode of a screen buffer. The SetConsoleModeSetConsoleMode function sets the current mode of either a console input buffer or

a screen buffer. If a console has multiple screen buffers, the output modes of each can be different. An application

can change I/O modes at any time. For more information about the console modes that affect high-level and low-

level I/O operations, see High-Level Console Modes and Low-Level Console Modes.

A command-line application should expect that other command-line applications may change the console mode at

any time and may not restore it to its original form before control is returned. Additionally, we recommend that all

command-line applications should capture the initial console mode at startup and attempt to restore it when

exiting to ensure minimal impact on other command-line applications attached to the same console.

The GetConsoleDisplayModeGetConsoleDisplayMode function reports whether the current console is in full-screen mode.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-modes.md

Window and Screen Buffer Size
10/29/2020 • 2 minutes to read • Edit Online

NOTENOTE

The size of a screen buffer is expressed in terms of a coordinate grid based on character cells. The width is the

number of character cells in each row, and the height is the number of rows. Associated with each screen buffer is

a window that determines the size and location of the rectangular portion of the console screen buffer displayed in

the console window. A screen buffer's window is defined by specifying the character-cell coordinates of the upper

left and lower right cells of the window's rectangle.

In the vir tual terminal sequencesvir tual terminal sequences world, the size of the window and the size of the screen buffer are fixed to the same

value. The terminal handles any scrollback region that would be the equivalent of a console with a screen buffer size larger

than its window size. That content belongs to the terminal and is generally no longer a part of the addressable area. For

more information, please see our comparison of the classic console functions versus vir tual terminal sequencesclassic console functions versus vir tual terminal sequences .

A screen buffer can be any size, limited only by available memory. The dimensions of a screen buffer's window

cannot exceed the corresponding dimensions of either the console screen buffer or the maximum window that can

fit on the screen based on the current font size (controlled exclusively by the user).

The GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo function returns the following information about a screen buffer and its

window:

The current size of the console screen buffer

The current location of the window

The maximum size of the window given the current screen buffer size, the current font size, and the screen size

The GetLargestConsoleWindowSizeGetLargestConsoleWindowSize function returns the maximum size of a console's window based on the

current font and screen sizes. This size differs from the maximum window size returned by

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo in that the console screen buffer size is ignored.

To change a screen buffer's size, use the SetConsoleScreenBufferS izeSetConsoleScreenBufferS ize function. This function fails if either

dimension of the specified size is less than the corresponding dimension of the console's window.

To change the size or location of a screen buffer's window, use the SetConsoleWindowInfoSetConsoleWindowInfo function. This

function fails if the specified window-corner coordinates exceed the limits of the console screen buffer or the

screen. Changing the window size of the active screen buffer changes the size of the console window displayed on

the screen.

A process can change its console's input mode to enable window input so that the process is able to receive input

when the user changes the console screen buffer size. If an application enables window input, it can use

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo to retrieve window and screen buffer size at startup. This information can then be

used to determine the way data is displayed in the window. If the user changes the console screen buffer size, the

application can respond by changing the way data is displayed. For example, an application can adjust the way text

wraps at the end of the line if the number of characters per row changes. If an application does not enable window

input, it must either use the inherited window and screen buffer sizes, or set them to the desired size during

startup and restore the inherited sizes at exit. For additional information about window input mode, see Low-Level

Console Modes.

https://github.com/Microsoft/Console-Docs/blob/master/docs/window-and-screen-buffer-size.md

Console Selection
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT
This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

An accessibility application needs information about the user's selection in the console. To retrieve the current

console selection, call the GetConsoleSelectionInfoGetConsoleSelectionInfo function. The CONSOLE_SELECTION_INFOCONSOLE_SELECTION_INFO structure

contains information about the selection, such as the anchor, coordinates, and status.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-selection.md

Legacy Console mode
10/29/2020 • 2 minutes to read • Edit Online

Using Legacy Console Mode

NOTENOTE

Differences between modes

16-bit applications on 32-bit Windows16-bit applications on 32-bit Windows

IME EmbeddingIME Embedding

API DifferencesAPI Differences

Legacy Console mode is a compatibility tool designed to help users of older command-line tools on Windows 10.

For any command-line tool that is not displaying or operating correctly in the default Windows 10 console

experience, this mode provides a coarse-grained solution to stepping the system back to an older version of the

console hosting experience.

To use Legacy Console mode, first open any console hosting window. This is typically done by launching one of the

command interpreters CMD or PowerShell.

Right-click on the application title bar and choose the Properties menu option. Choose the first tab, Options . Then

check the box at the bottom of the page describing Use legacy console . Press the OK button to apply.

The setting can be reverted by returning to the same property sheet menu and unchecking the box then pressing

OK .

This setting is globally applied to all sessions that start after the preference is changed. Sessions that are already open will not

be changed.

The Console Host team strives to minimize differences between the Legacy and current modes of the console to

ensure that as many customers as possible can run the most up-to-date version. If you experience an issue that

requires you to use the legacy console that is not documented here, please contact the team on the

microsoft/terminal GitHub repository or via the Feedback Hub for assistance.

Some 16-bit applications on 32-bit Windows use a virtual machine technology to operate called NTVDM. Often

these applications use a graphical screen buffering mode in conjunction with the console hosting environment to

operate. Only the legacy console experience supports these graphical buffering modes and the additional console

API support required to power these applications. The system will automatically select the legacy console

environment when one of these applications is launched.

The legacy Console Host embedded the suggestion portion of the IME inside the hosting window by reserving a

line at the bottom of the screen for suggestions. The current Console Host environment instead delegates this

activity to the IME subsystem to display an overlay window above the console host with suggestions. In an

environment where overlay windows are not possible (like with certain remoting tools), the legacy console host

may be required.

The major known difference between legacy and current is the implementation of UTF-8. The legacy host has

extremely rudimentary and often incorrect support of UTF-8 with code page 65001. The current console host

contains incremental improvements release-over-release of Windows 10 to improve this support. Applications that

are attempting to rely on predicting "known incorrect" interpretations of UTF-8 from the legacy console will find

https://github.com/Microsoft/Console-Docs/blob/master/docs/legacymode.md
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cmd
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell
https://github.com/microsoft/terminal/
https://docs.microsoft.com/en-us/windows-insider/feedback-hub/feedback-hub-app
https://docs.microsoft.com/en-us/windows/compatibility/ntvdm-and-16-bit-app-support
https://docs.microsoft.com/en-us/windows/win32/intl/code-pages

themselves receiving different answers as support is improved.

Other differences experienced with APIs should be reported to the microsoft/terminal GitHub repository or via the

Feedback Hub for triage and possible remediation.

https://github.com/microsoft/terminal/
https://docs.microsoft.com/en-us/windows-insider/feedback-hub/feedback-hub-app

Pseudoconsoles
10/29/2020 • 2 minutes to read • Edit Online

A pseudoconsole is a device type that allows applications to become the host for character-mode applications.

This is in contrast to a typical console session where the operating system will create a hosting window on

behalf of the character-mode application to handle graphical output and user input.

With a pseudoconsole, the hosting window is not created. The application that makes the pseudoconsole must

become responsible for displaying the graphical output and collecting user input. Alternatively, the information

can be relayed further to another application responsible for these activities at a later point in the chain.

This functionality is designed for third-party "terminal window" applications to exist on the platform or for

redirection of character-mode activities to a remote "terminal window" session on another machine or even on

another platform.

Note that the underlying console session will still be created on behalf of the application requesting the

pseudoconsole. All the rules of console sessions still apply including the ability for multiple client character-

mode applications to connect to the session.

To provide maximum compatibility with the existing world of pseudoterminal functionality, the information

provided over the pseudoconsole channel will always be encoded in UTF-8. This does not affect the codepage or

encoding of the client applications that are attached. Translation will happen inside the pseudoconsole system as

necessary.

An example for getting started can be found at Creating a Pseudoconsole Session.

Some additional background information on pseudoconsoles can be found at the announcement blog post:

Windows Command-Line: Introducing the Windows Pseudo Console (ConPTY).

https://github.com/Microsoft/Console-Docs/blob/master/docs/pseudoconsoles.md
https://blogs.msdn.microsoft.com/commandline/2018/08/02/windows-command-line-introducing-the-windows-pseudo-console-conpty/
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Console Reference
10/29/2020 • 2 minutes to read • Edit Online

The following sections describe the Console API:

Console Functions

Console Structures

Console WinEvents

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-reference.md

Using the Console
10/29/2020 • 2 minutes to read • Edit Online

The following examples demonstrate how to use the console functions:

Using the high-level input and output functions

Reading and writing blocks of characters and attributes

Reading input buffer events

Clearing the screen

Scrolling a screen buffer's window

Scrolling a screen buffer's contents

Registering a control handler function

https://github.com/Microsoft/Console-Docs/blob/master/docs/using-the-console.md

High-Level Console Input and Output Functions
10/29/2020 • 2 minutes to read • Edit Online

The ReadFileReadFile and WriteFileWriteFile functions, or the ReadConsoleReadConsole and WriteConsoleWriteConsole functions, enable an application

to read console input and write console output as a stream of characters. ReadConsoleReadConsole and WriteConsoleWriteConsole

behave exactly like ReadFileReadFile and WriteFileWriteFile except that they can be used either as wide-character functions (in

which text arguments must use Unicode) or as ANSI functions (in which text arguments must use characters from

the Windows character set). Applications that need to maintain a single set of sources to support either Unicode or

the ANSI character set should use ReadConsoleReadConsole and WriteConsoleWriteConsole.

ReadConsoleReadConsole and WriteConsoleWriteConsole can only be used with console handles; ReadFileReadFile and WriteFileWriteFile can be used

with other handles (such as files or pipes). ReadConsoleReadConsole and WriteConsoleWriteConsole fail if used with a standard handle

that has been redirected and is no longer a console handle.

To get keyboard input, a process can use ReadFileReadFile or ReadConsoleReadConsole with a handle to the console's input buffer, or

it can use ReadFileReadFile to read input from a file or a pipe if STDIN has been redirected. These functions only return

keyboard events that can be translated into ANSI or Unicode characters. The input that can be returned includes

control key combinations. The functions do not return keyboard events involving the function keys or arrow keys.

Input events generated by mouse, window, focus, or menu input are discarded.

If line input mode is enabled (the default mode), ReadFileReadFile and ReadConsoleReadConsole do not return to the calling

application until the ENTER key is pressed. If line input mode is disabled, the functions do not return until at least

one character is available. In either mode, all available characters are read until either no more keys are available

or the specified number of characters has been read. Unread characters are buffered until the next read operation.

The functions report the total number of characters actually read. If echo input mode is enabled, characters read by

these functions are written to the active screen buffer at the current cursor position.

A process can use WriteFileWriteFile or WriteConsoleWriteConsole to write to either an active or inactive screen buffer, or it can use

WriteFileWriteFile to write to a file or a pipe if STDOUT has been redirected. Processed output mode and wrap at EOL

output mode control the way characters are written or echoed to a screen buffer.

Characters written by WriteFileWriteFile or WriteConsoleWriteConsole, or echoed by ReadFileReadFile or ReadConsoleReadConsole, are inserted in a

screen buffer at the current cursor position. As each character is written, the cursor position advances to the next

character cell; however, the behavior at the end of a row depends on the console screen buffer's wrap at EOL

output mode.

Further detail about the position of the cursor can be found through vir tual terminals sequencesvir tual terminals sequences , specifically in

the quer y statequer y state category for finding the current position and the cursor positioningcursor positioning category for setting the

current position. Alternatively, an application can use the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo function to determine

the current cursor position and the SetConsoleCursorPositionSetConsoleCursorPosition function to set the cursor position. However, the

vir tual terminal sequencesvir tual terminal sequences mechanism is preferred for all new and ongoing development. More details on the

strategy behind this decision can be found in the classic functions versus vir tual terminalclassic functions versus vir tual terminal and ecosystemecosystem

roadmaproadmap documentation.

For an example that uses the high-level console I/O functions, see Using the High-Level Input and Output

Functions.

https://github.com/Microsoft/Console-Docs/blob/master/docs/high-level-console-input-and-output-functions.md
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Using the High-Level Input and Output Functions
10/29/2020 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

#include <windows.h>

void NewLine(void);
void ScrollScreenBuffer(HANDLE, INT);

HANDLE hStdout, hStdin;
CONSOLE_SCREEN_BUFFER_INFO csbiInfo;

int main(void)
{
 LPSTR lpszPrompt1 = "Type a line and press Enter, or q to quit: ";
 LPSTR lpszPrompt2 = "Type any key, or q to quit: ";
 CHAR chBuffer[256];
 DWORD cRead, cWritten, fdwMode, fdwOldMode;
 WORD wOldColorAttrs;

 // Get handles to STDIN and STDOUT.

 hStdin = GetStdHandle(STD_INPUT_HANDLE);
 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
 if (hStdin == INVALID_HANDLE_VALUE ||
 hStdout == INVALID_HANDLE_VALUE)
 {
 MessageBox(NULL, TEXT("GetStdHandle"), TEXT("Console Error"),
 MB_OK);
 return 1;
 }

 // Save the current text colors.

 if (! GetConsoleScreenBufferInfo(hStdout, &csbiInfo))
 {
 MessageBox(NULL, TEXT("GetConsoleScreenBufferInfo"),
 TEXT("Console Error"), MB_OK);

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

The following example uses the high-level console I/O functions for console I/O. For more information about the

high-level console I/O functions, see High-Level Console I/O.

The example assumes that the default I/O modes are in effect initially for the first calls to the ReadFileReadFile and

WriteFileWriteFile functions. Then the input mode is changed to turn offline input mode and echo input mode for the

second calls to ReadFileReadFile and WriteFileWriteFile. The SetConsoleTextAttr ibuteSetConsoleTextAttr ibute function is used to set the colors in which

subsequently written text will be displayed. Before exiting, the program restores the original console input mode

and color attributes.

The example's NewLine function is used when line input mode is disabled. It handles carriage returns by moving

the cursor position to the first cell of the next row. If the cursor is already in the last row of the console screen

buffer, the contents of the console screen buffer are scrolled up one line.

https://github.com/Microsoft/Console-Docs/blob/master/docs/using-the-high-level-input-and-output-functions.md
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

 return 1;
 }

 wOldColorAttrs = csbiInfo.wAttributes;

 // Set the text attributes to draw red text on black background.

 if (! SetConsoleTextAttribute(hStdout, FOREGROUND_RED |
 FOREGROUND_INTENSITY))
 {
 MessageBox(NULL, TEXT("SetConsoleTextAttribute"),
 TEXT("Console Error"), MB_OK);
 return 1;
 }

 // Write to STDOUT and read from STDIN by using the default
 // modes. Input is echoed automatically, and ReadFile
 // does not return until a carriage return is typed.
 //
 // The default input modes are line, processed, and echo.
 // The default output modes are processed and wrap at EOL.

 while (1)
 {
 if (! WriteFile(
 hStdout, // output handle
 lpszPrompt1, // prompt string
 lstrlenA(lpszPrompt1), // string length
 &cWritten, // bytes written
 NULL)) // not overlapped
 {
 MessageBox(NULL, TEXT("WriteFile"), TEXT("Console Error"),
 MB_OK);
 return 1;
 }

 if (! ReadFile(
 hStdin, // input handle
 chBuffer, // buffer to read into
 255, // size of buffer
 &cRead, // actual bytes read
 NULL)) // not overlapped
 break;
 if (chBuffer[0] == 'q') break;
 }

 // Turn off the line input and echo input modes

 if (! GetConsoleMode(hStdin, &fdwOldMode))
 {
 MessageBox(NULL, TEXT("GetConsoleMode"), TEXT("Console Error"),
 MB_OK);
 return 1;
 }

 fdwMode = fdwOldMode &
 ~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT);
 if (! SetConsoleMode(hStdin, fdwMode))
 {
 MessageBox(NULL, TEXT("SetConsoleMode"), TEXT("Console Error"),
 MB_OK);
 return 1;
 }

 // ReadFile returns when any input is available.
 // WriteFile is used to echo input.

 NewLine();

 while (1)
 {
 if (! WriteFile(
 hStdout, // output handle
 lpszPrompt2, // prompt string
 lstrlenA(lpszPrompt2), // string length
 &cWritten, // bytes written
 NULL)) // not overlapped
 {
 MessageBox(NULL, TEXT("WriteFile"), TEXT("Console Error"),
 MB_OK);
 return 1;
 }

 if (! ReadFile(hStdin, chBuffer, 1, &cRead, NULL))
 break;
 if (chBuffer[0] == '\r')
 NewLine();
 else if (! WriteFile(hStdout, chBuffer, cRead,
 &cWritten, NULL)) break;
 else
 NewLine();
 if (chBuffer[0] == 'q') break;
 }

 // Restore the original console mode.

 SetConsoleMode(hStdin, fdwOldMode);

 // Restore the original text colors.

 SetConsoleTextAttribute(hStdout, wOldColorAttrs);

 return 0;
}

// The NewLine function handles carriage returns when the processed
// input mode is disabled. It gets the current cursor position
// and resets it to the first cell of the next row.

void NewLine(void)
{
 if (! GetConsoleScreenBufferInfo(hStdout, &csbiInfo))
 {
 MessageBox(NULL, TEXT("GetConsoleScreenBufferInfo"),
 TEXT("Console Error"), MB_OK);
 return;
 }

 csbiInfo.dwCursorPosition.X = 0;

 // If it is the last line in the screen buffer, scroll
 // the buffer up.

 if ((csbiInfo.dwSize.Y-1) == csbiInfo.dwCursorPosition.Y)
 {
 ScrollScreenBuffer(hStdout, 1);
 }

 // Otherwise, advance the cursor to the next line.

 else csbiInfo.dwCursorPosition.Y += 1;

 if (! SetConsoleCursorPosition(hStdout,
 csbiInfo.dwCursorPosition))
 {
 MessageBox(NULL, TEXT("SetConsoleCursorPosition"),
 TEXT("Console Error"), MB_OK);
 return;

 return;
 }
}

void ScrollScreenBuffer(HANDLE h, INT x)
{
 SMALL_RECT srctScrollRect, srctClipRect;
 CHAR_INFO chiFill;
 COORD coordDest;

 srctScrollRect.Left = 0;
 srctScrollRect.Top = 1;
 srctScrollRect.Right = csbiInfo.dwSize.X - (SHORT)x;
 srctScrollRect.Bottom = csbiInfo.dwSize.Y - (SHORT)x;

 // The destination for the scroll rectangle is one row up.

 coordDest.X = 0;
 coordDest.Y = 0;

 // The clipping rectangle is the same as the scrolling rectangle.
 // The destination row is left unchanged.

 srctClipRect = srctScrollRect;

 // Set the fill character and attributes.

 chiFill.Attributes = FOREGROUND_RED|FOREGROUND_INTENSITY;
 chiFill.Char.AsciiChar = (char)' ';

 // Scroll up one line.

 ScrollConsoleScreenBuffer(
 h, // screen buffer handle
 &srctScrollRect, // scrolling rectangle
 &srctClipRect, // clipping rectangle
 coordDest, // top left destination cell
 &chiFill); // fill character and color
}

High-Level Console Modes
10/29/2020 • 6 minutes to read • Edit Online

VA L UEVA L UE M EA N IN GM EA N IN G

ENABLE_ECHO_INPUTENABLE_ECHO_INPUT 0x0004 Characters read by the ReadFileReadFile or ReadConsoleReadConsole function
are written to the active screen buffer as they are read. This
mode can be used only if the ENABLE_LINE_INPUTENABLE_LINE_INPUT mode is
also enabled.

ENABLE_INSERT_MODEENABLE_INSERT_MODE 0x0020 When enabled, text entered in a console window will be
inserted at the current cursor location and all text following
that location will not be overwritten. When disabled, all
following text will be overwritten.

ENABLE_LINE_INPUTENABLE_LINE_INPUT 0x0002 The ReadFileReadFile or ReadConsoleReadConsole function returns only when a
carriage return character is read. If this mode is disabled, the
functions return when one or more characters are available.

ENABLE_MOUSE_INPUTENABLE_MOUSE_INPUT 0x0010 If the mouse pointer is within the borders of the console
window and the window has the keyboard focus, mouse
events generated by mouse movement and button presses
are placed in the input buffer. These events are discarded by
ReadFileReadFile or ReadConsoleReadConsole, even when this mode is enabled.

The behavior of the high-level console functions is affected by the console input and output modes. All of the

following console input modes are enabled for a console's input buffer when a console is created:

Line input mode

Processed input mode

Echo input mode

Both of the following console output modes are enabled for a console screen buffer when it is created:

Processed output mode

Wrapping at EOL output mode

All three input modes, along with processed output mode, are designed to work together. It is best to either enable

or disable all of these modes as a group. When all are enabled, the application is said to be in "cooked" mode,

which means that most of the processing is handled for the application. When all are disabled, the application is in

"raw" mode, which means that input is unfiltered and any processing is left to the application.

An application can use the GetConsoleModeGetConsoleMode function to determine the current mode of a console's input buffer

or screen buffer. You can enable or disable any of these modes by using the following values in the

SetConsoleModeSetConsoleMode function. Note that setting the output mode of one screen buffer does not affect the output

mode of other screen buffers.

If the hConsoleHandle parameter is an input handle, the mode can be one or more of the following values. When a

console is created, all input modes except ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT are enabled by default.

https://github.com/Microsoft/Console-Docs/blob/master/docs/high-level-console-modes.md
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT 0x0001 CTRL+C is processed by the system and is not placed in the
input buffer. If the input buffer is being read by ReadFileReadFile or
ReadConsoleReadConsole, other control keys are processed by the
system and are not returned in the ReadFileReadFile or
ReadConsoleReadConsole buffer. If the ENABLE_LINE_INPUTENABLE_LINE_INPUT mode is
also enabled, backspace, carriage return, and line feed
characters are handled by the system.

ENABLE_QUICK_EDIT_MODEENABLE_QUICK_EDIT_MODE 0x0040 This flag enables the user to use the mouse to select and edit
text.

To enable this mode, use
ENABLE_QUICK_EDIT_MODE | ENABLE_EXTENDED_FLAGS . To

disable this mode, use ENABLE_EXTENDED_FL AGSENABLE_EXTENDED_FL AGS without
this flag.

ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT 0x0008 User interactions that change the size of the console screen
buffer are reported in the console's input buffer. Information
about these events can be read from the input buffer by
applications using the ReadConsoleInputReadConsoleInput function, but not
by those using ReadFileReadFile or ReadConsoleReadConsole.

ENABLE_VIRTUAL_TERMINAL_INPUTENABLE_VIRTUAL_TERMINAL_INPUT 0x0200 Setting this flag directs the Virtual Terminal processing engine
to convert user input received by the console window into
Console Vir tual Terminal SequencesConsole Vir tual Terminal Sequences that can be
retrieved by a supporting application through WriteFileWriteFile or
WriteConsoleWriteConsole functions.

The typical usage of this flag is intended in conjunction with
ENABLE_VIRTUAL_TERMINAL_PROCESSING on the output
handle to connect to an application that communicates
exclusively via virtual terminal sequences.

VA L UEVA L UE M EA N IN GM EA N IN G

VA L UEVA L UE M EA N IN GM EA N IN G

ENABLE_PROCESSED_OUTPUTENABLE_PROCESSED_OUTPUT 0x0001 Characters written by the WriteFileWriteFile or WriteConsoleWriteConsole
function or echoed by the ReadFileReadFile or ReadConsoleReadConsole
function are parsed for ASCII control sequences, and the
correct action is performed. Backspace, tab, bell, carriage
return, and line feed characters are processed.

ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT 0x0002 When writing with WriteFileWriteFile or WriteConsoleWriteConsole or echoing
with ReadFileReadFile or ReadConsoleReadConsole, the cursor moves to the
beginning of the next row when it reaches the end of the
current row. This causes the rows displayed in the console
window to scroll up automatically when the cursor advances
beyond the last row in the window. It also causes the
contents of the console screen buffer to scroll up (../discarding
the top row of the console screen buffer) when the cursor
advances beyond the last row in the console screen buffer. If
this mode is disabled, the last character in the row is
overwritten with any subsequent characters.

If the hConsoleHandle parameter is a screen buffer handle, the mode can be one or more of the following values.

When a screen buffer is created, both output modes are enabled by default.

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

ENABLE_VIRTUAL_TERMINAL_PROCESSINGENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004 When writing with WriteFileWriteFile or WriteConsoleWriteConsole, characters
are parsed for VT100 and similar control character sequences
that control cursor movement, color/font mode, and other
operations that can also be performed via the existing
Console APIs. For more information, see Console Vir tualConsole Vir tual
Terminal SequencesTerminal Sequences .

DISABLE_NEWLINE_AUTO_RETURNDISABLE_NEWLINE_AUTO_RETURN 0x0008 When writing with WriteFileWriteFile or WriteConsoleWriteConsole, this adds an
additional state to end-of-line wrapping that can delay the
cursor move and buffer scroll operations.

Normally when ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT is set
and text reaches the end of the line, the cursor will
immediately move to the next line and the contents of the
buffer will scroll up by one line. In contrast with this flag set,
the scroll operation and cursor move is delayed until the next
character arrives. The written character will be printed in the
final position on the line and the cursor will remain above this
character as if ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT was off,
but the next printable character will be printed as if
ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT is on. No overwrite will
occur. Specifically, the cursor quickly advances down to the
following line, a scroll is performed if necessary, the character
is printed, and the cursor advances one more position.

The typical usage of this flag is intended in conjunction with
setting ENABLE_VIRTUAL_TERMINAL_PROCESSINGENABLE_VIRTUAL_TERMINAL_PROCESSING to
better emulate a terminal emulator where writing the final
character on the screen (../in the bottom right corner) without
triggering an immediate scroll is the desired behavior.

ENABLE_LVB_GRID_WORLDWIDEENABLE_LVB_GRID_WORLDWIDE 0x0010 The APIs for writing character attributes including
WriteConsoleOutputWriteConsoleOutput and
WriteConsoleOutputAttributeWriteConsoleOutputAttribute allow the usage of flags
from character attributescharacter attributes to adjust the color of the
foreground and background of text. Additionally, a range of
DBCS flags was specified with the COMMON_LVB prefix.
Historically, these flags only functioned in DBCS code pages
for Chinese, Japanese, and Korean languages.

With exception of the leading byte and trailing byte flags, the
remaining flags describing line drawing and reverse video
(../swap foreground and background colors) can be useful for
other languages to emphasize portions of output.

Setting this console mode flag will allow these attributes to be
used in every code page on every language.

It is off by default to maintain compatibility with known
applications that have historically taken advantage of the
console ignoring these flags on non-CJK machines to store
bits in these fields for their own purposes or by accident.

Note that using the
ENABLE_VIRTUAL_TERMINAL_PROCESSING mode can result
in LVB grid and reverse video flags being set while this flag is
still off if the attached application requests underlining or
inverse video via Console Vir tual Terminal SequencesConsole Vir tual Terminal Sequences .

VA L UEVA L UE M EA N IN GM EA N IN G

https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365747

High-Level Console I/O
10/29/2020 • 2 minutes to read • Edit Online

The high-level I/O functions provide a simple way to read a stream of characters from console input or to write a

stream of characters to console output. A high-level read operation gets input characters from a console's input

buffer and stores them in a specified buffer. A high-level write operation takes characters from a specified buffer

and writes them to a screen buffer at the current cursor location, advancing the cursor as each character is written.

High-level I/O gives you a choice between the ReadFileReadFile and WriteFileWriteFile functions and the ReadConsoleReadConsole and

WriteConsoleWriteConsole functions. They are identical, except for two important differences. The console functions support

the use of either Unicode characters or the ANSI character set through the A and W variants of each function; the

file I/O functions do not support Unicode except for UTF-8 set with the CP_UTF8 constant on the SetConsoleCPSetConsoleCP

and SetConsoleOutputCPSetConsoleOutputCP functions prior to use. Also, the file I/O functions can be used to access files, pipes,

and serial communications devices; the console functions can only be used with console handles. This distinction is

important if an application relies on standard handles that may have been redirected.

When using either set of high-level functions, an application can control the text and background colors used to

display characters subsequently written to a screen buffer with the preferred mechanism being via vir tualvir tual

terminal sequencesterminal sequences . An application can also use the console modes that affect high-level console I/O to enable

or disable the following properties:

Echoing of keyboard input to the active screen buffer

Line input, in which a read operation does not return until the ENTER key is pressed

Automatic processing of keyboard input to handle carriage returns, CTRL+C, and other input details

Automatic processing of output to handle line wrapping, carriage returns, backspaces, and other output details

For more information, see the following topics:

Console Modes

High-Level Console Modes

High-Level Console Input and Output Functions

Classic APIs Versus Virtual Terminal Sequences

https://github.com/Microsoft/Console-Docs/blob/master/docs/high-level-console-i-o.md
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

Low-Level Console Input Functions
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ReadConsoleInputReadConsoleInput Reads and removes input records from an input buffer. The
function does not return until at least one record is available
to be read. Then all available records are transferred to the
buffer of the calling process until either no more records are
available or the specified number of records has been read.
Unread records remain in the input buffer for the next read
operation. The function reports the total number of records
that have been read. For an example that uses
ReadConsoleInputReadConsoleInput , see Reading Input Buffer Events.

PeekConsoleInputPeekConsoleInput Reads without removing the pending input records in an
input buffer. All available records up to the specified number
are copied into the buffer of the calling process. If no records
are available, the function returns immediately. The function
reports the total number of records that have been read.

GetNumberOfConsoleInputEventsGetNumberOfConsoleInputEvents Determines the number of unread input records in an input
buffer.

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

A low-level console input functions buffer contains input records that can include information about keyboard,

mouse, buffer-resizing, focus, and menu events. The low-level functions provide direct access to the input buffer,

unlike the high-level functions that filter and process the input buffer's data, discarding all but keyboard input.

There are five low-level functions for accessing a console's input buffer :

ReadConsoleInputReadConsoleInput

PeekConsoleInputPeekConsoleInput

GetNumberOfConsoleInputEventsGetNumberOfConsoleInputEvents

WriteConsoleInputWriteConsoleInput

FlushConsoleInputBufferFlushConsoleInputBuffer

The ReadConsoleInputReadConsoleInput, PeekConsoleInputPeekConsoleInput, and WriteConsoleInputWriteConsoleInput functions use the INPUT_RECORDINPUT_RECORD

structure to read from or write to an input buffer.

Following are descriptions of the low-level console input functions.

https://github.com/Microsoft/Console-Docs/blob/master/docs/low-level-console-input-functions.md
mabidm
Highlight

mabidm
Highlight

mabidm
Highlight

WriteConsoleInputWriteConsoleInput Places input records into the input buffer behind any pending
records in the buffer. The input buffer grows dynamically, if
necessary, to hold as many records as are written. To use this
function, the specified input buffer handle must have the
GENERIC_WRITE access right.

FlushConsoleInputBufferFlushConsoleInputBuffer Discards all unread events in the input buffer. To use this
function, the specified input buffer handle must have the
GENERIC_WRITE access right.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

A thread of an application's process can perform a wait operation to wait for input to be available in an input

buffer. To initiate a wait operation, specify a handle to the input buffer in a call to any of the wait functions. These

functions can return when the state of one or more objects is signaled. The state of a console input handle

becomes signaled when there are unread records in its input buffer. The state is reset to non-signaled when the

input buffer becomes empty. If there is no input available, the calling thread enters an efficient wait state,

consuming very little processor time while waiting for the conditions of the wait operation to be satisfied.

https://msdn.microsoft.com/library/windows/desktop/ms687069

Low-Level Console Output Functions
10/29/2020 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ReadConsoleOutputCharacterReadConsoleOutputCharacter Copies a string of Unicode or ANSI characters from a screen
buffer.

WriteConsoleOutputCharacterWriteConsoleOutputCharacter Writes a string of Unicode or ANSI characters to a screen
buffer.

ReadConsoleOutputAttributeReadConsoleOutputAttribute Copies a string of text and background color attributes from
a screen buffer.

WriteConsoleOutputAttributeWriteConsoleOutputAttribute Writes a string of text and background color attributes to a
screen buffer.

FillConsoleOutputCharacterFillConsoleOutputCharacter Writes a single Unicode or ANSI character to a specified
number of consecutive cells in a screen buffer.

FillConsoleOutputAttributeFillConsoleOutputAttribute Writes a text and background color attribute combination to
a specified number of consecutive cells in a screen buffer.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

ReadConsoleOutputReadConsoleOutput Copies character and color data from a specified block of
screen buffer cells into a given block in a destination buffer.

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

The low-level console output functions provide direct access to the character cells of a screen buffer. One set of

functions reads from or writes to consecutive cells beginning at any location in the console screen buffer. Another

set of functions reads from or writes to rectangular blocks of cells.

The following functions read from or write to a specified number of consecutive character cells in a screen buffer,

beginning with a specified cell.

For all of these functions, when the last cell of a row is encountered, reading or writing wraps around to the first

cell of the next row. When the end of the last row of the console screen buffer is encountered, the write functions

discard all unwritten characters or attributes, and the read functions report the number of characters or attributes

actually written.

The following functions read from or write to rectangular blocks of character cells at a specified location in a

screen buffer.

https://github.com/Microsoft/Console-Docs/blob/master/docs/low-level-console-output-functions.md

WriteConsoleOutputWriteConsoleOutput Writes character and color data to a specified block of screen
buffer cells from a given block in a source buffer.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

These functions treat screen buffers and source or destination buffers as two-dimensional arrays of CHAR_INFOCHAR_INFO

structures (containing character and color attribute data for each cell). The functions specify the width and height,

in character cells, of the source or destination buffer, and the pointer to the buffer is treated as a pointer to the

origin cell (0,0) of the two-dimensional array. The functions use a SMALL_RECTSMALL_RECT structure to specify which

rectangle to access in the console screen buffer, and the coordinates of the upper left cell in the source or

destination buffer determine the location of the corresponding rectangle in that buffer.

These functions automatically clip the specified screen buffer rectangle to fit within the boundaries of the console

screen buffer. For example, if the rectangle specifies lower right coordinates that are (column 100, row 50) and the

console screen buffer is only 80 columns wide, the coordinates are clipped so that they are (column 79, row 50).

Similarly, this adjusted rectangle is again clipped to fit within the boundaries of the source or destination buffer.

The screen buffer coordinates of the actual rectangle that was read from or written to are specified. For an

example that uses these functions, see Reading and Writing Blocks of Characters and Attributes.

The illustration shows a ReadConsoleOutputReadConsoleOutput operation where clipping occurs when the block is read from the

console screen buffer, and again when the block is copied into the destination buffer. The function reports the

actual screen buffer rectangle that it copied from.

https://docs.microsoft.com/en-us/windows/console/char-info-str

Low-Level Console I/O
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT
This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

The low-level console I/O functions expand an application's control over console I/O by enabling direct access to a

console's input and screen buffers. These functions enable an application to perform the following tasks:

Receive input about mouse and buffer-resizing events

Receive extended information about keyboard input events

Write input records to the input buffer

Read input records without removing them from the input buffer

Determine the number of pending events in the input buffer

Flush the input buffer

Read and write strings of Unicode or ANSI characters at a specified location in a screen buffer

Read and write strings of text and background color attributes at a specified screen buffer location

Read and write rectangular blocks of character and color data at a specified screen buffer location

Write a single Unicode or ANSI character, or a text and background color attribute combination, to a specified

number of consecutive cells beginning at a specified screen buffer location

For more information, see the following topics:

Console Modes

Low-Level Console Modes

Low-Level Console Input Functions

Low-Level Console Output Functions

https://github.com/Microsoft/Console-Docs/blob/master/docs/low-level-console-i-o.md

Low-Level Console Modes
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

M O DEM O DE DESC RIP T IO NDESC RIP T IO N

ENABLE_MOUSE_INPUTENABLE_MOUSE_INPUT Controls whether mouse events are reported in the input
buffer. By default, mouse input is enabled and window input is
disabled. Changing either of these modes affects only input
that occurs after the mode is set; pending mouse or window
events in the input buffer are not flushed. The mouse pointer
is displayed regardless of the mouse mode.

ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT Controls whether buffer-resizing events are reported in the
input buffer. By default, mouse input is enabled and window
input is disabled. Changing either of these modes affects only
input that occurs after the mode is set; pending mouse or
window events in the input buffer are not flushed. The mouse
pointer is displayed regardless of the mouse mode.

ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT Controls the processing of input for applications using the
high-level console I/O functions. However, if processed input
mode is enabled, the CTRL+C key combination is not
reported in the console's input buffer. Instead, it is passed on
to the appropriate control handler function. For more
information about control handlers, see Console Control
Handlers.

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

The types of input events reported in a console's input buffer depend on the console's mouse and window input

modes. The console's processed input mode determines how the system handles the CTRL+C key combination. To

set or retrieve the state of a console's input modes, an application can specify a console input buffer handle in a

call to the SetConsoleModeSetConsoleMode or GetConsoleModeGetConsoleMode function. The following modes are used with console input

handles.

The output modes of a screen buffer do not affect the behavior of the low-level output functions.

https://github.com/Microsoft/Console-Docs/blob/master/docs/low-level-console-modes.md

Reading and Writing Blocks of Characters and
Attributes
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

#include <windows.h>
#include <stdio.h>

int main(void)
{
 HANDLE hStdout, hNewScreenBuffer;
 SMALL_RECT srctReadRect;
 SMALL_RECT srctWriteRect;
 CHAR_INFO chiBuffer[160]; // [2][80];
 COORD coordBufSize;
 COORD coordBufCoord;
 BOOL fSuccess;

 // Get a handle to the STDOUT screen buffer to copy from and
 // create a new screen buffer to copy to.

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
 hNewScreenBuffer = CreateConsoleScreenBuffer(
 GENERIC_READ | // read/write access
 GENERIC_WRITE,
 FILE_SHARE_READ |
 FILE_SHARE_WRITE, // shared
 NULL, // default security attributes
 CONSOLE_TEXTMODE_BUFFER, // must be TEXTMODE
 NULL); // reserved; must be NULL
 if (hStdout == INVALID_HANDLE_VALUE ||
 hNewScreenBuffer == INVALID_HANDLE_VALUE)
 {
 printf("CreateConsoleScreenBuffer failed - (%d)\n", GetLastError());
 return 1;
 }

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

The ReadConsoleOutputReadConsoleOutput function copies a rectangular block of character and color attribute data from a console

screen buffer into a destination buffer. The function treats the destination buffer as a two-dimensional array of

CHAR_INFOCHAR_INFO structures. Similarly, the WriteConsoleOutputWriteConsoleOutput function copies a rectangular block of character and

color attribute data from a source buffer to a console screen buffer. For more information about reading from or

writing to rectangular blocks of screen buffer cells, see Input and Output Methods.

The following example uses the CreateConsoleScreenBufferCreateConsoleScreenBuffer function to create a new screen buffer. After the

SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer function makes this the active screen buffer, a block of characters and color

attributes is copied from the top two rows of the STDOUT screen buffer into a temporary buffer. The data is then

copied from the temporary buffer into the new active screen buffer. When the application is finished using the new

screen buffer, it calls SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer to restore the original STDOUT screen buffer.

https://github.com/Microsoft/Console-Docs/blob/master/docs/reading-and-writing-blocks-of-characters-and-attributes.md
https://docs.microsoft.com/en-us/windows/console/char-info-str

 // Make the new screen buffer the active screen buffer.

 if (! SetConsoleActiveScreenBuffer(hNewScreenBuffer))
 {
 printf("SetConsoleActiveScreenBuffer failed - (%d)\n", GetLastError());
 return 1;
 }

 // Set the source rectangle.

 srctReadRect.Top = 0; // top left: row 0, col 0
 srctReadRect.Left = 0;
 srctReadRect.Bottom = 1; // bot. right: row 1, col 79
 srctReadRect.Right = 79;

 // The temporary buffer size is 2 rows x 80 columns.

 coordBufSize.Y = 2;
 coordBufSize.X = 80;

 // The top left destination cell of the temporary buffer is
 // row 0, col 0.

 coordBufCoord.X = 0;
 coordBufCoord.Y = 0;

 // Copy the block from the screen buffer to the temp. buffer.

 fSuccess = ReadConsoleOutput(
 hStdout, // screen buffer to read from
 chiBuffer, // buffer to copy into
 coordBufSize, // col-row size of chiBuffer
 coordBufCoord, // top left dest. cell in chiBuffer
 &srctReadRect); // screen buffer source rectangle
 if (! fSuccess)
 {
 printf("ReadConsoleOutput failed - (%d)\n", GetLastError());
 return 1;
 }

 // Set the destination rectangle.

 srctWriteRect.Top = 10; // top lt: row 10, col 0
 srctWriteRect.Left = 0;
 srctWriteRect.Bottom = 11; // bot. rt: row 11, col 79
 srctWriteRect.Right = 79;

 // Copy from the temporary buffer to the new screen buffer.

 fSuccess = WriteConsoleOutput(
 hNewScreenBuffer, // screen buffer to write to
 chiBuffer, // buffer to copy from
 coordBufSize, // col-row size of chiBuffer
 coordBufCoord, // top left src cell in chiBuffer
 &srctWriteRect); // dest. screen buffer rectangle
 if (! fSuccess)
 {
 printf("WriteConsoleOutput failed - (%d)\n", GetLastError());
 return 1;
 }
 Sleep(5000);

 // Restore the original active screen buffer.

 if (! SetConsoleActiveScreenBuffer(hStdout))
 {
 printf("SetConsoleActiveScreenBuffer failed - (%d)\n", GetLastError());
 return 1;
 }

 }

 return 0;
}

Reading Input Buffer Events
10/29/2020 • 2 minutes to read • Edit Online

#include <windows.h>
#include <stdio.h>

HANDLE hStdin;
DWORD fdwSaveOldMode;

VOID ErrorExit(LPSTR);
VOID KeyEventProc(KEY_EVENT_RECORD);
VOID MouseEventProc(MOUSE_EVENT_RECORD);
VOID ResizeEventProc(WINDOW_BUFFER_SIZE_RECORD);

int main(VOID)
{
 DWORD cNumRead, fdwMode, i;
 INPUT_RECORD irInBuf[128];
 int counter=0;

 // Get the standard input handle.

 hStdin = GetStdHandle(STD_INPUT_HANDLE);
 if (hStdin == INVALID_HANDLE_VALUE)
 ErrorExit("GetStdHandle");

 // Save the current input mode, to be restored on exit.

 if (! GetConsoleMode(hStdin, &fdwSaveOldMode))
 ErrorExit("GetConsoleMode");

 // Enable the window and mouse input events.

 fdwMode = ENABLE_WINDOW_INPUT | ENABLE_MOUSE_INPUT;
 if (! SetConsoleMode(hStdin, fdwMode))
 ErrorExit("SetConsoleMode");

 // Loop to read and handle the next 100 input events.

 while (counter++ <= 100)
 {
 // Wait for the events.

 if (! ReadConsoleInput(
 hStdin, // input buffer handle
 irInBuf, // buffer to read into
 128, // size of read buffer
 &cNumRead)) // number of records read
 ErrorExit("ReadConsoleInput");

 // Dispatch the events to the appropriate handler.

 for (i = 0; i < cNumRead; i++)
 {
 switch(irInBuf[i].EventType)

The ReadConsoleInputReadConsoleInput function can be used to directly access a console's input buffer. When a console is

created, mouse input is enabled and window input is disabled. To ensure that the process receives all types of

events, this example uses the SetConsoleModeSetConsoleMode function to enable window and mouse input. Then it goes into a

loop that reads and handles 100 console input events. For example, the message "Keyboard event" is displayed

when the user presses a key and the message "Mouse event" is displayed when the user interacts with the mouse.

https://github.com/Microsoft/Console-Docs/blob/master/docs/reading-input-buffer-events.md

 {
 case KEY_EVENT: // keyboard input
 KeyEventProc(irInBuf[i].Event.KeyEvent);
 break;

 case MOUSE_EVENT: // mouse input
 MouseEventProc(irInBuf[i].Event.MouseEvent);
 break;

 case WINDOW_BUFFER_SIZE_EVENT: // scrn buf. resizing
 ResizeEventProc(irInBuf[i].Event.WindowBufferSizeEvent);
 break;

 case FOCUS_EVENT: // disregard focus events

 case MENU_EVENT: // disregard menu events
 break;

 default:
 ErrorExit("Unknown event type");
 break;
 }
 }
 }

 // Restore input mode on exit.

 SetConsoleMode(hStdin, fdwSaveOldMode);

 return 0;
}

VOID ErrorExit (LPSTR lpszMessage)
{
 fprintf(stderr, "%s\n", lpszMessage);

 // Restore input mode on exit.

 SetConsoleMode(hStdin, fdwSaveOldMode);

 ExitProcess(0);
}

VOID KeyEventProc(KEY_EVENT_RECORD ker)
{
 printf("Key event: ");

 if(ker.bKeyDown)
 printf("key pressed\n");
 else printf("key released\n");
}

VOID MouseEventProc(MOUSE_EVENT_RECORD mer)
{
#ifndef MOUSE_HWHEELED
#define MOUSE_HWHEELED 0x0008
#endif
 printf("Mouse event: ");

 switch(mer.dwEventFlags)
 {
 case 0:

 if(mer.dwButtonState == FROM_LEFT_1ST_BUTTON_PRESSED)
 {
 printf("left button press \n");
 }
 else if(mer.dwButtonState == RIGHTMOST_BUTTON_PRESSED)
 {

 {
 printf("right button press \n");
 }
 else
 {
 printf("button press\n");
 }
 break;
 case DOUBLE_CLICK:
 printf("double click\n");
 break;
 case MOUSE_HWHEELED:
 printf("horizontal mouse wheel\n");
 break;
 case MOUSE_MOVED:
 printf("mouse moved\n");
 break;
 case MOUSE_WHEELED:
 printf("vertical mouse wheel\n");
 break;
 default:
 printf("unknown\n");
 break;
 }
}

VOID ResizeEventProc(WINDOW_BUFFER_SIZE_RECORD wbsr)
{
 printf("Resize event\n");
 printf("Console screen buffer is %d columns by %d rows.\n", wbsr.dwSize.X, wbsr.dwSize.Y);
}

Clearing the Screen
10/29/2020 • 3 minutes to read • Edit Online

Example 1

TIPTIP

There are four ways to clear the screen in a console application.

This is the recommended method using vir tual terminal sequencesvir tual terminal sequences for all new development. For more information, see

the discussion of classic console APIs versus vir tual terminal sequencesclassic console APIs versus vir tual terminal sequences .

The first method is to set your application up for virtual terminal output sequences and then call the "clear screen"

command.

https://github.com/Microsoft/Console-Docs/blob/master/docs/clearing-the-screen.md

#include <windows.h>

int main(void)
{
 HANDLE hStdout;

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 // Fetch existing console mode so we correctly add a flag and not turn off others
 DWORD mode = 0;
 if (!GetConsoleMode(hStdOut, &mode))
 {
 return ::GetLastError();
 }

 // Hold original mode to restore on exit to be cooperative with other command-line apps.
 const DWORD originalMode = mode;
 mode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;

 // Try to set the mode.
 if (!SetConsoleMode(hStdOut, mode))
 {
 return ::GetLastError();
 }

 // Write the sequence for clearing the display.
 DWORD written = 0;
 PCWSTR sequence = L"\x1b[2J";
 if (!WriteConsoleW(hStdOut, sequence, ARRAYSIZE(sequence), &written, NULL))
 {
 // If we fail, try to restore the mode on the way out.
 SetConsoleMode(hStdOut, originalMode);
 return ::GetLastError();
 }

 // To also clear the scroll back, emit L"\x1b[3J" as well.
 // 2J only clears the visible window and 3J only clears the scroll back.

 // Restore the mode on the way out to be nice to other command-line applications.
 SetConsoleMode(hStdOut, originalMode);

 return 0;
}

Example 2

You can find additional variations on this command in the virtual terminal sequences documentation on Erase InErase In

DisplayDisplay .

The second method is to write a function to scroll the contents of the screen or buffer and set a fill for the revealed

space.

This matches the behavior of the command prompt cmd.exe .

#include <windows.h>

void cls(HANDLE hConsole)
{
 CONSOLE_SCREEN_BUFFER_INFO csbi;
 SMALL_RECT scrollRect;
 COORD scrollTarget;
 CHAR_INFO fill;

 // Get the number of character cells in the current buffer.
 if (!GetConsoleScreenBufferInfo(hConsole, &csbi))
 {
 return;
 }

 // Scroll the rectangle of the entire buffer.
 scrollRect.Left = 0;
 scrollRect.Top = 0;
 scrollRect.Right = csbi.dwSize.X;
 scrollRect.Bottom = csbi.dwSize.Y;

 // Scroll it upwards off the top of the buffer with a magnitude of the entire height.
 scrollTarget.X = 0;
 scrollTarget.Y = (SHORT)(0 - csbi.dwSize.Y);

 // Fill with empty spaces with the buffer's default text attribute.
 fill.Char.UnicodeChar = TEXT(' ');
 fill.Attributes = csbi.wAttributes;

 // Do the scroll
 ScrollConsoleScreenBuffer(hConsole, &scrollRect, NULL, scrollTarget, &fill);

 // Move the cursor to the top left corner too.
 csbi.dwCursorPosition.X = 0;
 csbi.dwCursorPosition.Y = 0;

 SetConsoleCursorPosition(hConsole, csbi.dwCursorPosition);
}

int main(void)
{
 HANDLE hStdout;

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 cls(hStdout);

 return 0;
}

Example 3
The third method is to write a function to programmatically clear the screen using the

FillConsoleOutputCharacterFillConsoleOutputCharacter and FillConsoleOutputAttr ibuteFillConsoleOutputAttr ibute functions.

The following sample code demonstrates this technique.

#include <windows.h>

void cls(HANDLE hConsole)
{
 COORD coordScreen = { 0, 0 }; // home for the cursor
 DWORD cCharsWritten;
 CONSOLE_SCREEN_BUFFER_INFO csbi;
 DWORD dwConSize;

 // Get the number of character cells in the current buffer.
 if (!GetConsoleScreenBufferInfo(hConsole, &csbi))
 {
 return;
 }

 dwConSize = csbi.dwSize.X * csbi.dwSize.Y;

 // Fill the entire screen with blanks.
 if (!FillConsoleOutputCharacter(hConsole, // Handle to console screen buffer
 (TCHAR)' ', // Character to write to the buffer
 dwConSize, // Number of cells to write
 coordScreen, // Coordinates of first cell
 &cCharsWritten)) // Receive number of characters written
 {
 return;
 }

 // Get the current text attribute.
 if (!GetConsoleScreenBufferInfo(hConsole, &csbi))
 {
 return;
 }

 // Set the buffer's attributes accordingly.
 if (!FillConsoleOutputAttribute(hConsole, // Handle to console screen buffer
 csbi.wAttributes, // Character attributes to use
 dwConSize, // Number of cells to set attribute
 coordScreen, // Coordinates of first cell
 &cCharsWritten)) // Receive number of characters written
 {
 return;
 }

 // Put the cursor at its home coordinates.
 SetConsoleCursorPosition(hConsole, coordScreen);
}

int main(void)
{
 HANDLE hStdout;

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 cls(hStdout);

 return 0;
}

Scrolling the Screen Buffer
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT
This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

The console window displays a portion of the active screen buffer. Each screen buffer maintains its own current

window rectangle that specifies the coordinates of the upper left and lower right character cells to be displayed in

the console window. To determine the current window rectangle of a screen buffer, use

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo. When a screen buffer is created, the upper left corner of its window is at the

upper left corner of the console screen buffer at (0,0).

The window rectangle can change to display different parts of the console screen buffer. The window rectangle of a

screen buffer can change in the following situations:

When SetConsoleWindowInfoSetConsoleWindowInfo is called to specify a new window rectangle, it scrolls the view of the

console screen buffer by changing the position of the window rectangle without changing the size of the

window. For examples of scrolling the window's contents, see Scrolling a Screen Buffer's Window.

When using the WriteFileWriteFile function to write to a screen buffer with wrap at end-of-line (EOL) output mode

enabled, the window rectangle shifts automatically, so the cursor is always displayed.

When the SetConsoleCursorPositionSetConsoleCursorPosition function specifies a new cursor position that is outside the

boundaries of the current window rectangle, the window rectangle shifts automatically to display the cursor.

When the user changes the size of the console window or uses the window's scroll bars, the window

rectangle of the active screen buffer can change. This change is not reported as a window resizing event in

the input buffer.

In each of these situations, the window rectangle shifts to display a different part of the console screen buffer, but

the contents of the console screen buffer remain in the same position. The following situations can cause the

console screen buffer's contents to shift:

When the ScrollConsoleScreenBufferScrollConsoleScreenBuffer function is called, a rectangular block is copied from one part of a

https://github.com/Microsoft/Console-Docs/blob/master/docs/scrolling-the-screen-buffer.md
https://msdn.microsoft.com/library/windows/desktop/aa365747

screen buffer to another.

When using WriteFileWriteFile to write to a screen buffer with wrap at EOL output mode enabled, the console screen

buffer's contents scroll automatically when the end of the console screen buffer is encountered. This scrolling

discards the top row of the console screen buffer.

ScrollConsoleScreenBufferScrollConsoleScreenBuffer specifies the console screen buffer rectangle that is moved and the new upper left

coordinates to which the rectangle is copied. This function can scroll a portion or the entire contents of the console

screen buffer.

The illustration shows a ScrollConsoleScreenBufferScrollConsoleScreenBuffer operation that scrolls the entire contents of the console

screen buffer up by several rows. The contents of the top rows are discarded, and the bottom rows are filled with a

specified character and color.

The effects of ScrollConsoleScreenBufferScrollConsoleScreenBuffer can be limited by specifying an optional clipping rectangle so that the

contents of the console screen buffer outside the clipping rectangle are unchanged. The effect of clipping is to

create a subwindow (the clipping rectangle) whose contents are scrolled without affecting the rest of the console

screen buffer. For an example that uses ScrollConsoleScreenBufferScrollConsoleScreenBuffer , see Scrolling a Screen Buffer's Contents.

https://msdn.microsoft.com/library/windows/desktop/aa365747

Scrolling a Screen Buffer's Contents
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

#include <windows.h>
#include <stdio.h>

int main(void)
{
 HANDLE hStdout;
 CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
 SMALL_RECT srctScrollRect, srctClipRect;
 CHAR_INFO chiFill;
 COORD coordDest;
 int i;

 printf("\nPrinting 20 lines for reference. ");
 printf("Notice that line 6 is discarded during scrolling.\n");
 for(i=0; i<=20; i++)
 printf("%d\n", i);

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 if (hStdout == INVALID_HANDLE_VALUE)
 {
 printf("GetStdHandle failed with %d\n", GetLastError());
 return 1;
 }

 // Get the screen buffer size.

 if (!GetConsoleScreenBufferInfo(hStdout, &csbiInfo))
 {
 printf("GetConsoleScreenBufferInfo failed %d\n", GetLastError());
 return 1;
 }

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

The ScrollConsoleScreenBufferScrollConsoleScreenBuffer function moves a block of character cells from one part of a screen buffer to

another part of the same screen buffer. The function specifies the upper left and lower right cells of the source

rectangle to be moved and the destination coordinates of the new location for the upper left cell. The character

and color data in the source cells is moved to the new location, and any cells left empty by the move are filled in

with a specified character and color. If a clipping rectangle is specified, the cells outside of it are left unchanged.

ScrollConsoleScreenBufferScrollConsoleScreenBuffer can be used to delete a line by specifying coordinates of the first cell in the line as

the destination coordinates and specifying a scrolling rectangle that includes all the rows below the line.

The following example shows the use of a clipping rectangle to scroll only the bottom 15 rows of the console

screen buffer. The rows in the specified rectangle are scrolled up one line at a time, and the top row of the block is

discarded. The contents of the console screen buffer outside the clipping rectangle are left unchanged.

https://github.com/Microsoft/Console-Docs/blob/master/docs/scrolling-a-screen-buffer-s-contents.md

 // The scrolling rectangle is the bottom 15 rows of the
 // screen buffer.

 srctScrollRect.Top = csbiInfo.dwSize.Y - 16;
 srctScrollRect.Bottom = csbiInfo.dwSize.Y - 1;
 srctScrollRect.Left = 0;
 srctScrollRect.Right = csbiInfo.dwSize.X - 1;

 // The destination for the scroll rectangle is one row up.

 coordDest.X = 0;
 coordDest.Y = csbiInfo.dwSize.Y - 17;

 // The clipping rectangle is the same as the scrolling rectangle.
 // The destination row is left unchanged.

 srctClipRect = srctScrollRect;

 // Fill the bottom row with green blanks.

 chiFill.Attributes = BACKGROUND_GREEN | FOREGROUND_RED;
 chiFill.Char.AsciiChar = (char)' ';

 // Scroll up one line.

 if(!ScrollConsoleScreenBuffer(
 hStdout, // screen buffer handle
 &srctScrollRect, // scrolling rectangle
 &srctClipRect, // clipping rectangle
 coordDest, // top left destination cell
 &chiFill)) // fill character and color
 {
 printf("ScrollConsoleScreenBuffer failed %d\n", GetLastError());
 return 1;
 }
return 0;
}

Related topics
Scrolling a Screen Buffer's Window

Scrolling the Screen Buffer

Scrolling a Screen Buffer's Window
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

#include <windows.h>
#include <stdio.h>
#include <conio.h>

HANDLE hStdout;

int ScrollByAbsoluteCoord(int iRows)
{
 CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
 SMALL_RECT srctWindow;

 // Get the current screen buffer size and window position.

 if (! GetConsoleScreenBufferInfo(hStdout, &csbiInfo))
 {
 printf("GetConsoleScreenBufferInfo (%d)\n", GetLastError());
 return 0;
 }

 // Set srctWindow to the current window size and location.

 srctWindow = csbiInfo.srWindow;

 // Check whether the window is too close to the screen buffer top

 if (srctWindow.Top >= iRows)
 {
 srctWindow.Top -= (SHORT)iRows; // move top up
 srctWindow.Bottom -= (SHORT)iRows; // move bottom up

 if (! SetConsoleWindowInfo(
 hStdout, // screen buffer handle
 TRUE, // absolute coordinates
 &srctWindow)) // specifies new location
 {

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

The SetConsoleWindowInfoSetConsoleWindowInfo function can be used to scroll the contents of a screen buffer in the console

window. This function can also change the window size. The function can either specify the new upper left and

lower right corners of the console screen buffer's window as absolute screen buffer coordinates or specify the

changes from the current window coordinates. The function fails if the specified window coordinates are outside

the boundaries of the console screen buffer.

The following example scrolls the view of the console screen buffer up by modifying the window coordinates

returned by the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo function. The ScrollByAbsoluteCoord function demonstrates how

to specify absolute coordinates, while the ScrollByRelativeCoord function demonstrates how to specify relative

coordinates.

https://github.com/Microsoft/Console-Docs/blob/master/docs/scrolling-a-screen-buffer-s-window.md

 printf("SetConsoleWindowInfo (%d)\n", GetLastError());
 return 0;
 }
 return iRows;
 }
 else
 {
 printf("\nCannot scroll; the window is too close to the top.\n");
 return 0;
 }
}

int ScrollByRelativeCoord(int iRows)
{
 CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
 SMALL_RECT srctWindow;

 // Get the current screen buffer window position.

 if (! GetConsoleScreenBufferInfo(hStdout, &csbiInfo))
 {
 printf("GetConsoleScreenBufferInfo (%d)\n", GetLastError());
 return 0;
 }

 // Check whether the window is too close to the screen buffer top

 if (csbiInfo.srWindow.Top >= iRows)
 {
 srctWindow.Top =- (SHORT)iRows; // move top up
 srctWindow.Bottom =- (SHORT)iRows; // move bottom up
 srctWindow.Left = 0; // no change
 srctWindow.Right = 0; // no change

 if (! SetConsoleWindowInfo(
 hStdout, // screen buffer handle
 FALSE, // relative coordinates
 &srctWindow)) // specifies new location
 {
 printf("SetConsoleWindowInfo (%d)\n", GetLastError());
 return 0;
 }
 return iRows;
 }
 else
 {
 printf("\nCannot scroll; the window is too close to the top.\n");
 return 0;
 }
}

int main(void)
{
 int i;

 printf("\nPrinting twenty lines, then scrolling up five lines.\n");
 printf("Press any key to scroll up ten lines; ");
 printf("then press another key to stop the demo.\n");
 for(i=0; i<=20; i++)
 printf("%d\n", i);

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 if(ScrollByAbsoluteCoord(5))
 _getch();
 else return 0;

 if(ScrollByRelativeCoord(10))
 _getch();

 _getch();
 else return 0;
}

Related topics
Scrolling a Screen Buffer's Contents

Scrolling the Screen Buffer

CTRL+C and CTRL+BREAK Signals
12/1/2020 • 2 minutes to read • Edit Online

The CTRL+C and CTRL+BREAK key combinations receive special handling by console processes. By default, when a

console window has the keyboard focus, CTRL+C or CTRL+BREAK is treated as a signal (SIGINT or SIGBREAK) and

not as keyboard input. By default, these signals are passed to all console processes that are attached to the console.

(Detached processes are not affected. See Creation of a ConsoleCreation of a Console.) The system creates a new thread in each client

process to handle the event. The thread raises an exception if the process is being debugged. The debugger can

handle the exception or continue with the exception unhandled.

CTRL+BREAK is always treated as a signal, but an application can change the default CTRL+C behavior in two ways

that prevent the handler functions from being called:

The SetConsoleModeSetConsoleMode function can disable the ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT input mode for a console's

input buffer, so CTRL+C is reported as keyboard input rather than as a signal.

When SetConsoleCtr lHandlerSetConsoleCtr lHandler is called with NULLNULL and TRUETRUE values for its parameters, the calling process

ignores CTRL+C signals. Normal CTRL+C processing is restored by calling SetConsoleCtr lHandlerSetConsoleCtr lHandler with

NULLNULL and FALSEFALSE values. This attribute of ignoring or not ignoring CTRL+C signals is inherited by child

processes, but it can be enabled or disabled by any process without affecting existing processes.

For more information on how these signals are processed, including timeouts, please see the Handler RoutineHandler Routine

callback documentation.

https://github.com/Microsoft/Console-Docs/blob/master/docs/ctrl-c-and-ctrl-break-signals.md

CTRL+CLOSE Signal
10/29/2020 • 2 minutes to read • Edit Online

The system generates a CTRL+CLOSE signal when the user closes a console. All processes attached to the console

receive the signal, giving each process an opportunity to clean up before termination. When a process receives this

signal, the handler function can take one of the following actions after performing any cleanup operations:

Call ExitProcessExitProcess to terminate the process.

Return FALSEFALSE. If none of the registered handler functions returns TRUETRUE, the default handler terminates the

process.

Return TRUETRUE. In this case, no other handler functions are called and the process terminates.

https://github.com/Microsoft/Console-Docs/blob/master/docs/ctrl-close-signal.md
https://msdn.microsoft.com/library/windows/desktop/ms682658

Registering a Control Handler Function
10/29/2020 • 2 minutes to read • Edit Online

This is an example of the SetConsoleCtr lHandlerSetConsoleCtr lHandler function that is used to install a control handler.

When a CTRL+C signal is received, the control handler returns TRUETRUE, indicating that it has handled the signal.

Doing this prevents other control handlers from being called.

When a CTRL_CLOSE_EVENTCTRL_CLOSE_EVENT signal is received, the control handler returns TRUETRUE and the process terminates.

When a CTRL_BREAK_EVENTCTRL_BREAK_EVENT, CTRL_LOGOFF_EVENTCTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN_EVENTCTRL_SHUTDOWN_EVENT signal is received, the

control handler returns FALSEFALSE. Doing this causes the signal to be passed to the next control handler function. If no

other control handlers have been registered or none of the registered handlers returns TRUETRUE, the default handler

will be used, resulting in the process being terminated.

https://github.com/Microsoft/Console-Docs/blob/master/docs/registering-a-control-handler-function.md

// CtrlHandler.cpp : This file contains the 'main' function. Program execution begins and ends there.
//

#include "pch.h"

#include <windows.h>
#include <stdio.h>

BOOL WINAPI CtrlHandler(DWORD fdwCtrlType)
{
 switch (fdwCtrlType)
 {
 // Handle the CTRL-C signal.
 case CTRL_C_EVENT:
 printf("Ctrl-C event\n\n");
 Beep(750, 300);
 return TRUE;

 // CTRL-CLOSE: confirm that the user wants to exit.
 case CTRL_CLOSE_EVENT:
 Beep(600, 200);
 printf("Ctrl-Close event\n\n");
 return TRUE;

 // Pass other signals to the next handler.
 case CTRL_BREAK_EVENT:
 Beep(900, 200);
 printf("Ctrl-Break event\n\n");
 return FALSE;

 case CTRL_LOGOFF_EVENT:
 Beep(1000, 200);
 printf("Ctrl-Logoff event\n\n");
 return FALSE;

 case CTRL_SHUTDOWN_EVENT:
 Beep(750, 500);
 printf("Ctrl-Shutdown event\n\n");
 return FALSE;

 default:
 return FALSE;
 }
}

int main(void)
{
 if (SetConsoleCtrlHandler(CtrlHandler, TRUE))
 {
 printf("\nThe Control Handler is installed.\n");
 printf("\n -- Now try pressing Ctrl+C or Ctrl+Break, or");
 printf("\n try logging off or closing the console...\n");
 printf("\n(...waiting in a loop for events...)\n\n");

 while (1) {}
 }
 else
 {
 printf("\nERROR: Could not set control handler");
 return 1;
 }
 return 0;
}

Console Virtual Terminal Sequences
10/29/2020 • 26 minutes to read • Edit Online

Output Sequences

Simple Cursor Positioning

SEQ UEN C ESEQ UEN C E SH O RT H A N DSH O RT H A N D B EH AVIO RB EH AVIO R

ESC A CUU Cursor Up by 1

ESC B CUD Cursor Down by 1

ESC C CUF Cursor Forward (Right) by 1

ESC D CUB Cursor Backward (Left) by 1

Virtual terminal sequences are control character sequences that can control cursor

movement, color/font mode, and other operations when written to the output stream.

Sequences may also be received on the input stream in response to an output stream query

information sequence or as an encoding of user input when the appropriate mode is set.

You can use GetConsoleModeGetConsoleMode and SetConsoleModeSetConsoleMode functions to configure this behavior.

A sample of the suggested way to enable virtual terminal behaviors is included at the end of

this document.

The behavior of the following sequences is based on the VT100 and derived terminal

emulator technologies, most specifically the xterm terminal emulator. More information

about terminal sequences can be found at http://vt100.net and at http://invisible-

island.net/xterm/ctlseqs/ctlseqs.html.

The following terminal sequences are intercepted by the console host when written into the

output stream, if the ENABLE_VIRTUAL_TERMINAL_PROCESSING flag is set on the screen

buffer handle using the SetConsoleModeSetConsoleMode function. Note that the

DISABLE_NEWLINE_AUTO_RETURN flag may also be useful in emulating the cursor

positioning and scrolling behavior of other terminal emulators in relation to characters

written to the final column in any row.

In all of the following descriptions, ESC is always the hexadecimal value 0x1B. No spaces are

to be included in terminal sequences. For an example of how these sequences are used in

practice, please see the example at the end of this topic.

The following table describes simple escape sequences with a single action command

directly after the ESC character. These sequences have no parameters and take effect

immediately.

All commands in this table are generally equivalent to calling the

SetConsoleCursorPositionSetConsoleCursorPosition console API to place the cursor.

Cursor movement will be bounded by the current viewport into the buffer. Scrolling (if

available) will not occur.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-virtual-terminal-sequences.md
http://vt100.net
http://invisible-island.net/xterm/ctlseqs/ctlseqs.html

ESC M RI Reverse Index – Performs the
reverse operation of \n, moves
cursor up one line, maintains
horizontal position, scrolls
buffer if necessary*

ESC 7 DECSC Save Cursor Position in
Memory**

ESC 8 DECSR Restore Cursor Position from
Memory**

SEQ UEN C ESEQ UEN C E SH O RT H A N DSH O RT H A N D B EH AVIO RB EH AVIO R

NOTENOTE

Cursor Positioning

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [<n> A CUU Cursor Up Cursor up by <n>

ESC [<n> B CUD Cursor Down Cursor down by <n>

ESC [<n> C CUF Cursor Forward Cursor forward (Right)
by <n>

ESC [<n> D CUB Cursor Backward Cursor backward (Left)
by <n>

* If there are scroll margins set, RI inside the margins will scroll only the contents of the margins,

and leave the viewport unchanged. (See Scrolling Margins)

**There will be no value saved in memory until the first use of the save command. The only way to

access the saved value is with the restore command.

The following tables encompass Control Sequence Introducer (CSI) type sequences. All CSI

sequences start with ESC (0x1B) followed by [(left bracket, 0x5B) and may contain

parameters of variable length to specify more information for each operation. This will be

represented by the shorthand <n>. Each table below is grouped by functionality with notes

below each table explaining how the group works.

For all parameters, the following rules apply unless otherwise noted:

<n> represents the distance to move and is an optional parameter

If <n> is omitted or equals 0, it will be treated as a 1

<n> cannot be larger than 32,767 (maximum short value)

<n> cannot be negative

All commands in this section are generally equivalent to calling the

SetConsoleCursorPositionSetConsoleCursorPosition console API.

Cursor movement will be bounded by the current viewport into the buffer. Scrolling (if

available) will not occur.

ESC [<n> E CNL Cursor Next Line Cursor down <n>
lines from current
position

ESC [<n> F CPL Cursor Previous Line Cursor up <n> lines
from current position

ESC [<n> G CHA Cursor Horizontal
Absolute

Cursor moves to
<n>th position
horizontally in the
current line

ESC [<n> d VPA Vertical Line Position
Absolute

Cursor moves to the
<n>th position
vertically in the
current column

ESC [<y> ; <x> H CUP Cursor Position *Cursor moves to
<x>; <y> coordinate
within the viewport,
where <x> is the
column of the <y>
line

ESC [<y> ; <x> f HVP Horizontal Vertical
Position

*Cursor moves to
<x>; <y> coordinate
within the viewport,
where <x> is the
column of the <y>
line

ESC [s ANSISYSSC Save Cursor – Ansi.sys
emulation

**With no parameters,
performs a save cursor
operation like DECSC

ESC [u ANSISYSSC Restore Cursor –
Ansi.sys emulation

**With no parameters,
performs a restore
cursor operation like
DECRC

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

NOTENOTE

Cursor Visibility

*<x> and <y> parameters have the same limitations as <n> above. If <x> and <y> are omitted,

they will be set to 1;1.

**ANSI.sys historical documentation can be found at

https://msdn.microsoft.com/library/cc722862.aspx and is implemented for

convenience/compatibility.

The following commands control the visibility of the cursor and its blinking state. The

DECTCEM sequences are generally equivalent to calling SetConsoleCursorInfoSetConsoleCursorInfo console API

to toggle cursor visibility.

https://msdn.microsoft.com/library/cc722862.aspx

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [? 12 h ATT160 Text Cursor Enable
Blinking

Start the cursor
blinking

ESC [? 12 l ATT160 Text Cursor Disable
Blinking

Stop blinking the
cursor

ESC [? 25 h DECTCEM Text Cursor Enable
Mode Show

Show the cursor

ESC [? 25 l DECTCEM Text Cursor Enable
Mode Hide

Hide the cursor

TIPTIP

Viewport Positioning

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [<n> S SU Scroll Up Scroll text up by <n>.
Also known as pan
down, new lines fill in
from the bottom of
the screen

ESC [<n> T SD Scroll Down Scroll down by <n>.
Also known as pan up,
new lines fill in from
the top of the screen

Text Modification

The enable sequences end in a lowercase H character (h) and the disable sequences end in a

lowercase L character (l).

All commands in this section are generally equivalent to calling

ScrollConsoleScreenBufferScrollConsoleScreenBuffer console API to move the contents of the console buffer.

CautionCaution The command names are misleading. Scroll refers to which direction the text

moves during the operation, not which way the viewport would seem to move.

The text is moved starting with the line the cursor is on. If the cursor is on the middle row of

the viewport, then scroll up would move the bottom half of the viewport, and insert blank

lines at the bottom. Scroll down would move the top half of the viewport’s rows, and insert

new lines at the top.

Also important to note is scroll up and down are also affected by the scrolling margins.

Scroll up and down won’t affect any lines outside the scrolling margins.

The default value for <n> is 1, and the value can be optionally omitted.

All commands in this section are generally equivalent to calling

FillConsoleOutputCharacterFillConsoleOutputCharacter , FillConsoleOutputAttr ibuteFillConsoleOutputAttr ibute, and

ScrollConsoleScreenBufferScrollConsoleScreenBuffer console APIs to modify the text buffer contents.

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [<n> @ ICH Insert Character Insert <n> spaces at
the current cursor
position, shifting all
existing text to the
right. Text exiting the
screen to the right is
removed.

ESC [<n> P DCH Delete Character Delete <n> characters
at the current cursor
position, shifting in
space characters from
the right edge of the
screen.

ESC [<n> X ECH Erase Character Erase <n> characters
from the current
cursor position by
overwriting them with
a space character.

ESC [<n> L IL Insert Line Inserts <n> lines into
the buffer at the
cursor position. The
line the cursor is on,
and lines below it, will
be shifted downwards.

ESC [<n> M DL Delete Line Deletes <n> lines
from the buffer,
starting with the row
the cursor is on.

NOTENOTE

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

For IL and DL, only the lines in the scrolling margins (see Scrolling Margins) are affected. If no

margins are set, the default margin borders are the current viewport. If lines would be shifted below

the margins, they are discarded. When lines are deleted, blank lines are inserted at the bottom of

the margins, lines from outside the viewport are never affected.

For each of the sequences, the default value for <n> if it is omitted is 0.

For the following commands, the parameter <n> has 3 valid values:

0 erases from the current cursor position (inclusive) to the end of the line/display

1 erases from the beginning of the line/display up to and including the current cursor

position

2 erases the entire line/display

ESC [<n> J ED Erase in Display Replace all text in the
current
viewport/screen
specified by <n> with
space characters

ESC [<n> K EL Erase in Line Replace all text on the
line with the cursor
specified by <n> with
space characters

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

Text Formatting

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [<n> m SGR Set Graphics Rendition Set the format of the
screen and text as
specified by <n>

VA L UEVA L UE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

0 Default Returns all attributes to the
default state prior to
modification

1 Bold/Bright Applies brightness/intensity
flag to foreground color

4 Underline Adds underline

24 No underline Removes underline

7 Negative Swaps foreground and
background colors

All commands in this section are generally equivalent to calling SetConsoleTextAttr ibuteSetConsoleTextAttr ibute

console APIs to adjust the formatting of all future writes to the console output text buffer.

This command is special in that the <n> position below can accept between 0 and 16

parameters separated by semicolons.

When no parameters are specified, it is treated the same as a single 0 parameter.

The following table of values can be used in <n> to represent different formatting modes.

Formatting modes are applied from left to right. Applying competing formatting options will

result in the right-most option taking precedence.

For options that specify colors, the colors will be used as defined in the console color table

which can be modified using the SetConsoleScreenBufferInfoExSetConsoleScreenBufferInfoEx API. If the table is

modified to make the “blue” position in the table display an RGB shade of red, then all calls

to Foreground BlueForeground Blue will display that red color until otherwise changed.

27 Positive (No negative) Returns
foreground/background to
normal

30 Foreground Black Applies non-bold/bright black
to foreground

31 Foreground Red Applies non-bold/bright red to
foreground

32 Foreground Green Applies non-bold/bright green
to foreground

33 Foreground Yellow Applies non-bold/bright yellow
to foreground

34 Foreground Blue Applies non-bold/bright blue to
foreground

35 Foreground Magenta Applies non-bold/bright
magenta to foreground

36 Foreground Cyan Applies non-bold/bright cyan
to foreground

37 Foreground White Applies non-bold/bright white
to foreground

38 Foreground Extended Applies extended color value to
the foreground (see details
below)

39 Foreground Default Applies only the foreground
portion of the defaults (see 0)

40 Background Black Applies non-bold/bright black
to background

41 Background Red Applies non-bold/bright red to
background

42 Background Green Applies non-bold/bright green
to background

43 Background Yellow Applies non-bold/bright yellow
to background

44 Background Blue Applies non-bold/bright blue to
background

45 Background Magenta Applies non-bold/bright
magenta to background

VA L UEVA L UE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

46 Background Cyan Applies non-bold/bright cyan
to background

47 Background White Applies non-bold/bright white
to background

48 Background Extended Applies extended color value to
the background (see details
below)

49 Background Default Applies only the background
portion of the defaults (see 0)

90 Bright Foreground Black Applies bold/bright black to
foreground

91 Bright Foreground Red Applies bold/bright red to
foreground

92 Bright Foreground Green Applies bold/bright green to
foreground

93 Bright Foreground Yellow Applies bold/bright yellow to
foreground

94 Bright Foreground Blue Applies bold/bright blue to
foreground

95 Bright Foreground Magenta Applies bold/bright magenta to
foreground

96 Bright Foreground Cyan Applies bold/bright cyan to
foreground

97 Bright Foreground White Applies bold/bright white to
foreground

100 Bright Background Black Applies bold/bright black to
background

101 Bright Background Red Applies bold/bright red to
background

102 Bright Background Green Applies bold/bright green to
background

103 Bright Background Yellow Applies bold/bright yellow to
background

104 Bright Background Blue Applies bold/bright blue to
background

105 Bright Background Magenta Applies bold/bright magenta to
background

VA L UEVA L UE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

106 Bright Background Cyan Applies bold/bright cyan to
background

107 Bright Background White Applies bold/bright white to
background

VA L UEVA L UE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

Extended ColorsExtended Colors

SGR SUB SEQ UEN C ESGR SUB SEQ UEN C E DESC RIP T IO NDESC RIP T IO N

38 ; 2 ; <r> ; <g> ; Set foreground color to RGB value specified in
<r>, <g>, parameters*

48 ; 2 ; <r> ; <g> ; Set background color to RGB value specified in
<r>, <g>, parameters*

38 ; 5 ; <s> Set foreground color to <s> index in 88 or 256
color table*

48 ; 5 ; <s> Set background color to <s> index in 88 or 256
color table*

Screen Colors

SEQ UEN C ESEQ UEN C E DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC] 4 ; <i> ; rgb : <r> / <g>
/ ESC

Modify Screen Colors Sets the screen color palette
index <i> to the RGB values
specified in <r>, <g>,

Mode Changes

Some virtual terminal emulators support a palette of colors greater than the 16 colors

provided by the Windows Console. For these extended colors, the Windows Console will

choose the nearest appropriate color from the existing 16 color table for display. Unlike

typical SGR values above, the extended values will consume additional parameters after the

initial indicator according to the table below.

*The 88 and 256 color palettes maintained internally for comparison are based from the

xterm terminal emulator. The comparison/rounding tables cannot be modified at this time.

The following command allows the application to set the screen colors palette values to any

RGB value.

The RGB values should be hexadecimal values between 0 and ff , and separated by the

forward-slash character (e.g. rgb:1/24/86).

Note that this sequence is an OSC “Operating system command” sequence, and not a CSI

like many of the other sequences listed, and as such start with “\x1b]”, not “\x1b[”.

These are sequences that control the input modes. There are two different sets of input

modes, the Cursor Keys Mode and the Keypad Keys Mode. The Cursor Keys Mode controls

the sequences that are emitted by the arrow keys as well as Home and End, while the Keypad

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC = DECKPAM Enable Keypad
Application Mode

Keypad keys will emit
their Application
Mode sequences.

ESC > DECKPNM Enable Keypad
Numeric Mode

Keypad keys will emit
their Numeric Mode
sequences.

ESC [? 1 h DECCKM Enable Cursor Keys
Application Mode

Keypad keys will emit
their Application
Mode sequences.

ESC [? 1 l DECCKM Disable Cursor Keys
Application Mode (use
Normal Mode)

Keypad keys will emit
their Numeric Mode
sequences.

Query State

NOTENOTE

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [6 n DECXCPR Report Cursor Position Emit the cursor
position as: ESC [<r>
; <c> R Where <r> =
cursor row and <c> =
cursor column

ESC [0 c DA Device Attributes Report the terminal
identity. Will emit
“\x1b[?1;0c”, indicating
"VT101 with No
Options".

Tabs

Keys Mode controls the sequences emitted by the keys on the numpad primarily, as well as

the function keys.

Each of these modes are simple boolean settings – the Cursor Keys Mode is either Normal

(default) or Application, and the Keypad Keys Mode is either Numeric (default) or

Application.

See the Cursor Keys and Numpad & Function Keys sections for the sequences emitted in

these modes.

All commands in this section are generally equivalent to calling Get* console APIs to retrieve

status information about the current console buffer state.

These queries will emit their responses into the console input stream immediately after being

recognized on the output stream while ENABLE_VIRTUAL_TERMINAL_PROCESSING is set. The

ENABLE_VIRTUAL_TERMINAL_INPUT flag does not apply to query commands as it is assumed that

an application making the query will always want to receive the reply.

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC H HTS Horizontal Tab Set Sets a tab stop in the
current column the
cursor is in.

ESC [<n> I CHT Cursor Horizontal
(Forward) Tab

Advance the cursor to
the next column (in
the same row) with a
tab stop. If there are
no more tab stops,
move to the last
column in the row. If
the cursor is in the last
column, move to the
first column of the
next row.

ESC [<n> Z CBT Cursor Backwards Tab Move the cursor to
the previous column
(in the same row) with
a tab stop. If there are
no more tab stops,
moves the cursor to
the first column. If the
cursor is in the first
column, doesn’t move
the cursor.

ESC [0 g TBC Tab Clear (current
column)

Clears the tab stop in
the current column, if
there is one.
Otherwise does
nothing.

ESC [3 g TBC Tab Clear (all columns) Clears all currently set
tab stops.

Designate Character Set

While the windows console traditionally expects tabs to be exclusively eight characters wide,

*nix applications utilizing certain sequences can manipulate where the tab stops are within

the console windows to optimize cursor movement by the application.

The following sequences allow an application to set the tab stop locations within the console

window, remove them, and navigate between them.

For both CHT and CBT, <n> is an optional parameter that (default=1) indicating how

many times to advance the cursor in the specified direction.

If there are no tab stops set via HTS, CHT and CBT will treat the first and last columns of

the window as the only two tab stops.

Using HTS to set a tab stop will also cause the console to navigate to the next tab stop on

the output of a TAB (0x09, ‘\t’) character, in the same manner as CHT.

The following sequences allow a program to change the active character set mapping. This

allows a program to emit 7-bit ASCII characters, but have them displayed as other glyphs on

the terminal screen itself. Currently, the only two supported character sets are ASCII (default)

and the DEC Special Graphics Character Set. See http://vt100.net/docs/vt220-rm/table2-

http://vt100.net/docs/vt220-rm/table2-4.html

SEQ UEN C ESEQ UEN C E DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC (0 Designate Character Set – DEC
Line Drawing

Enables DEC Line Drawing
Mode

ESC (B Designate Character Set – US
ASCII

Enables ASCII Mode (Default)

H EXH EX A SC IIA SC II DEC L IN E DRAW IN GDEC L IN E DRAW IN G

0x6a j ┘

0x6b k ┐

0x6c l ┌

0x6d m └

0x6e n ┼

0x71 q ─

0x74 t ├

0x75 u ┤

0x76 v ┴

0x77 w ┬

0x78 x │

Scrolling Margins

4.html for a listing of all of the characters represented by the DEC Special Graphics Character

Set.

Notably, the DEC Line Drawing mode is used for drawing borders in console applications.

The following table shows what ASCII character maps to which line drawing character.

The following sequences allow a program to configure the “scrolling region” of the screen

that is affected by scrolling operations. This is a subset of the rows that are adjusted when

the screen would otherwise scroll, for example, on a ‘\n’ or RI. These margins also affect the

rows modified by Insert Line (IL) and Delete Line (DL), Scroll Up (SU) and Scroll Down (SD).

The scrolling margins can be especially useful for having a portion of the screen that doesn’t

scroll when the rest of the screen is filled, such as having a title bar at the top or a status bar

at the bottom of your application.

For DECSTBM, there are two optional parameters, <t> and , which are used to specify

the rows that represent the top and bottom lines of the scroll region, inclusive. If the

parameters are omitted, <t> defaults to 1 and defaults to the current viewport height.

Scrolling margins are per-buffer, so importantly, the Alternate Buffer and Main Buffer

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [<t> ; r DECSTBM Set Scrolling Region Sets the VT scrolling
margins of the
viewport.

Window Title

SEQ UEN C ESEQ UEN C E DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC] 0 ; <string> BEL Set Icon and Window Title Sets the console window’s title
to <string>.

ESC] 2 ; <string> BEL Set Window Title Sets the console window’s title
to <string>.

Alternate Screen Buffer

SEQ UEN C ESEQ UEN C E DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [? 1 0 4 9 h Use Alternate Screen Buffer Switches to a new alternate
screen buffer.

ESC [? 1 0 4 9 l Use Main Screen Buffer Switches to the main buffer.

Window Width

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

maintain separate scrolling margins settings (so a full screen application in the alternate

buffer will not poison the main buffer ’s margins).

The following commands allows the application to set the title of the console window to the

given <string> parameter. The string must be less than 255 characters to be accepted. This is

equivalent to calling SetConsoleTitle with the given string.

Note that these sequences are OSC “Operating system command” sequences, and not a CSI

like many of the other sequences listed, and as such starts with “\x1b]”, not “\x1b[”.

The terminating character here is the “Bell” character, ‘\x07’

*Nix style applications often utilize an alternate screen buffer, so that they can modify the

entire contents of the buffer, without affecting the application that started them. The

alternate buffer is exactly the dimensions of the window, without any scrollback region.

For an example of this behavior, consider when vim is launched from bash. Vim uses the

entirety of the screen to edit the file, then returning to bash leaves the original buffer

unchanged.

The following sequences can be used to control the width of the console window. They are

roughly equivalent to the calling the SetConsoleScreenBufferInfoEx console API to set the

window width.

ESC [? 3 h DECCOLM Set Number of
Columns to 132

Sets the console width
to 132 columns wide.

ESC [? 3 l DECCOLM Set Number of
Columns to 80

Sets the console width
to 80 columns wide.

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

Soft Reset

SEQ UEN C ESEQ UEN C E C O DEC O DE DESC RIP T IO NDESC RIP T IO N B EH AVIO RB EH AVIO R

ESC [! p DECSTR Soft Reset Reset certain terminal
settings to their
defaults.

Input Sequences

Cursor KeysCursor Keys

KEYKEY N O RM A L M O DEN O RM A L M O DE A P P L IC AT IO N M O DEA P P L IC AT IO N M O DE

Up Arrow ESC [A ESC O A

Down Arrow ESC [B ESC O B

Right Arrow ESC [C ESC O C

Left Arrow ESC [D ESC O D

Home ESC [H ESC O H

End ESC [F ESC O F

The following sequence can be used to reset certain properties to their default values.The

following properties are reset to the following default values (also listed are the sequences

that control those properties):

Cursor visibility: visible (DECTEM)

Numeric Keypad: Numeric Mode (DECNKM)

Cursor Keys Mode: Normal Mode (DECCKM)

Top and Bottom Margins: Top=1, Bottom=Console height (DECSTBM)

Character Set: US ASCII

Graphics Rendition: Default/Off (SGR)

Save cursor state: Home position (0,0) (DECSC)

The following terminal sequences are emitted by the console host on the input stream if the

ENABLE_VIRTUAL_TERMINAL_INPUT flag is set on the input buffer handle using the

SetConsoleMode flag.

There are two internal modes that control which sequences are emitted for the given input

keys, the Cursor Keys Mode and the Keypad Keys Mode. These are described in the Mode

Changes section.

KEYKEY A N Y M O DEA N Y M O DE

Ctrl + Up Arrow ESC [1 ; 5 A

Ctrl + Down Arrow ESC [1 ; 5 B

Ctrl + Right Arrow ESC [1 ; 5 C

Ctrl + Left Arrow ESC [1 ; 5 D

Numpad & Function KeysNumpad & Function Keys

KEYKEY SEQ UEN C ESEQ UEN C E

Backspace 0x7f (DEL)

Pause 0x1a (SUB)

Escape 0x1b (ESC)

Insert ESC [2 ~

Delete ESC [3 ~

Page Up ESC [5 ~

Page Down ESC [6 ~

F1 ESC O P

F2 ESC O Q

F3 ESC O R

F4 ESC O S

F5 ESC [1 5 ~

F6 ESC [1 7 ~

F7 ESC [1 8 ~

F8 ESC [1 9 ~

F9 ESC [2 0 ~

F10 ESC [2 1 ~

F11 ESC [2 3 ~

Additionally, if Ctrl is pressed with any of these keys, the following sequences are emitted

instead, regardless of the Cursor Keys Mode:

F12 ESC [2 4 ~

KEYKEY SEQ UEN C ESEQ UEN C E

ModifiersModifiers

KEYKEY SEQ UEN C ESEQ UEN C E

Ctrl + Space 0x00 (NUL)

Ctrl + Up Arrow ESC [1 ; 5 A

Ctrl + Down Arrow ESC [1 ; 5 B

Ctrl + Right Arrow ESC [1 ; 5 C

Ctrl + Left Arrow ESC [1 ; 5 D

NOTENOTE

Samples
Example of SGR terminal sequencesExample of SGR terminal sequences

Alt is treated by prefixing the sequence with an escape: ESC <c> where <c> is the character

passed by the operating system. Alt+Ctrl is handled the same way except that the operating

system will have pre-shifted the <c> key to the appropriate control character which will be

relayed to the application.

Ctrl is generally passed through exactly as received from the system. This is typically a single

character shifted down into the control character reserved space (0x0-0x1f). For example,

Ctrl+@ (0x40) becomes NUL (0x00), Ctrl+[(0x5b) becomes ESC (0x1b), etc. A few Ctrl key

combinations are treated specially according to the following table:

Left Ctrl + Right Alt is treated as AltGr. When both are seen together, they will be stripped and

the Unicode value of the character presented by the system will be passed into the target. The

system will pre-translate AltGr values according to the current system input settings.

The following code provides several examples of text formatting.

#include <stdio.h>
#include <wchar.h>
#include <windows.h>

int main()
{
 // Set output mode to handle virtual terminal sequences
 HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE);
 if (hOut == INVALID_HANDLE_VALUE)
 {
 return GetLastError();
 }

 DWORD dwMode = 0;
 if (!GetConsoleMode(hOut, &dwMode))
 {
 return GetLastError();
 }

 dwMode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;
 if (!SetConsoleMode(hOut, dwMode))
 {
 return GetLastError();
 }

 // Try some Set Graphics Rendition (SGR) terminal escape sequences
 wprintf(L"\x1b[31mThis text has a red foreground using SGR.31.\r\n");
 wprintf(L"\x1b[1mThis text has a bright (bold) red foreground using SGR.1 to affect the
previous color setting.\r\n");
 wprintf(L"\x1b[mThis text has returned to default colors using SGR.0 implicitly.\r\n");
 wprintf(L"\x1b[34;46mThis text shows the foreground and background change at the same
time.\r\n");
 wprintf(L"\x1b[0mThis text has returned to default colors using SGR.0
explicitly.\r\n");
 wprintf(L"\x1b[31;32;33;34;35;36;101;102;103;104;105;106;107mThis text attempts to
apply many colors in the same command. Note the colors are applied from left to right so
only the right-most option of foreground cyan (SGR.36) and background bright white
(SGR.107) is effective.\r\n");
 wprintf(L"\x1b[39mThis text has restored the foreground color only.\r\n");
 wprintf(L"\x1b[49mThis text has restored the background color only.\r\n");

 return 0;
}

NOTENOTE
In the previous example, the string ' \x1b[31m ' is the implementation of ESC [<n> mESC [<n> m with <n>

being 31.

The following graphic shows the output of the previous code example.

Example of Enabling Virtual Terminal ProcessingExample of Enabling Virtual Terminal Processing
The following code provides an example of the recommended way to enable virtual terminal

processing for an application. The intent of the sample is to demonstrate:

1. The existing mode should always be retrieved via GetConsoleMode and analyzed

before being set with SetConsoleMode.

2. Checking whether SetConsoleMode returns 0 and GetLastError returns

STATUS_INVALID_PARAMETER is the current mechanism to determine when running

on a down-level system. An application receiving STATUS_INVALID_PARAMETER with

one of the newer console mode flags in the bit field should gracefully degrade

behavior and try again.

#include <stdio.h>
#include <wchar.h>
#include <windows.h>

int main()
{
 // Set output mode to handle virtual terminal sequences
 HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE);
 if (hOut == INVALID_HANDLE_VALUE)
 {
 return false;
 }
 HANDLE hIn = GetStdHandle(STD_INPUT_HANDLE);
 if (hIn == INVALID_HANDLE_VALUE)
 {
 return false;
 }

 DWORD dwOriginalOutMode = 0;
 DWORD dwOriginalInMode = 0;
 if (!GetConsoleMode(hOut, &dwOriginalOutMode))
 {
 return false;
 }
 if (!GetConsoleMode(hIn, &dwOriginalInMode))
 {
 return false;
 }

 DWORD dwRequestedOutModes = ENABLE_VIRTUAL_TERMINAL_PROCESSING |
DISABLE_NEWLINE_AUTO_RETURN;
 DWORD dwRequestedInModes = ENABLE_VIRTUAL_TERMINAL_INPUT;

 DWORD dwOutMode = dwOriginalOutMode | dwRequestedOutModes;
 if (!SetConsoleMode(hOut, dwOutMode))
 {
 // we failed to set both modes, try to step down mode gracefully.
 dwRequestedOutModes = ENABLE_VIRTUAL_TERMINAL_PROCESSING;
 dwOutMode = dwOriginalOutMode | dwRequestedOutModes;
 if (!SetConsoleMode(hOut, dwOutMode))
 {
 // Failed to set any VT mode, can't do anything here.
 return -1;
 }
 }

 DWORD dwInMode = dwOriginalInMode | ENABLE_VIRTUAL_TERMINAL_INPUT;
 if (!SetConsoleMode(hIn, dwInMode))
 {
 // Failed to set VT input mode, can't do anything here.
 return -1;
 }

 return 0;
}

Example of Select Anniversary Update FeaturesExample of Select Anniversary Update Features

//

The following example is intended to be a more robust example of code using a variety of

escape sequences to manipulate the buffer, with an emphasis on the features added in the

Anniversary Update for Windows 10.

This example makes use of the alternate screen buffer, manipulating tab stops, setting

scrolling margins, and changing the character set.

//
// Copyright (C) Microsoft. All rights reserved.
//
#define DEFINE_CONSOLEV2_PROPERTIES

// System headers
#include <windows.h>

// Standard library C-style
#include <wchar.h>
#include <stdlib.h>
#include <stdio.h>

#define ESC "\x1b"
#define CSI "\x1b["

bool EnableVTMode()
{
 // Set output mode to handle virtual terminal sequences
 HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE);
 if (hOut == INVALID_HANDLE_VALUE)
 {
 return false;
 }

 DWORD dwMode = 0;
 if (!GetConsoleMode(hOut, &dwMode))
 {
 return false;
 }

 dwMode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;
 if (!SetConsoleMode(hOut, dwMode))
 {
 return false;
 }
 return true;
}

void PrintVerticalBorder()
{
 printf(ESC "(0"); // Enter Line drawing mode
 printf(CSI "104;93m"); // bright yellow on bright blue
 printf("x"); // in line drawing mode, \x78 -> \u2502 "Vertical Bar"
 printf(CSI "0m"); // restore color
 printf(ESC "(B"); // exit line drawing mode
}

void PrintHorizontalBorder(COORD const Size, bool fIsTop)
{
 printf(ESC "(0"); // Enter Line drawing mode
 printf(CSI "104;93m"); // Make the border bright yellow on bright blue
 printf(fIsTop? "l" : "m"); // print left corner

 for (int i = 1; i < Size.X - 1; i++)
 printf("q"); // in line drawing mode, \x71 -> \u2500 "HORIZONTAL SCAN LINE-5"

 printf(fIsTop? "k" : "j"); // print right corner
 printf(CSI "0m");
 printf(ESC "(B"); // exit line drawing mode
}

void PrintStatusLine(char* const pszMessage, COORD const Size)
{
 printf(CSI "%d;1H", Size.Y);
 printf(CSI "K"); // clear the line
 printf(pszMessage);
}

int __cdecl wmain(int argc, WCHAR* argv[])

int __cdecl wmain(int argc, WCHAR* argv[])
{
 argc; // unused
 argv; // unused
 //First, enable VT mode
 bool fSuccess = EnableVTMode();
 if (!fSuccess)
 {
 printf("Unable to enter VT processing mode. Quitting.\n");
 return -1;
 }
 HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE);
 if (hOut == INVALID_HANDLE_VALUE)
 {
 printf("Couldn't get the console handle. Quitting.\n");
 return -1;
 }

 CONSOLE_SCREEN_BUFFER_INFO ScreenBufferInfo;
 GetConsoleScreenBufferInfo(hOut, &ScreenBufferInfo);
 COORD Size;
 Size.X = ScreenBufferInfo.srWindow.Right - ScreenBufferInfo.srWindow.Left + 1;
 Size.Y = ScreenBufferInfo.srWindow.Bottom - ScreenBufferInfo.srWindow.Top + 1;

 // Enter the alternate buffer
 printf(CSI "?1049h");

 // Clear screen, tab stops, set, stop at columns 16, 32
 printf(CSI "1;1H");
 printf(CSI "2J"); // Clear screen

 int iNumTabStops = 4; // (0, 20, 40, width)
 printf(CSI "3g"); // clear all tab stops
 printf(CSI "1;20H"); // Move to column 20
 printf(ESC "H"); // set a tab stop

 printf(CSI "1;40H"); // Move to column 40
 printf(ESC "H"); // set a tab stop

 // Set scrolling margins to 3, h-2
 printf(CSI "3;%dr", Size.Y-2);
 int iNumLines = Size.Y - 4;

 printf(CSI "1;1H");
 printf(CSI "102;30m");
 printf("Windows 10 Anniversary Update - VT Example");
 printf(CSI "0m");

 // Print a top border - Yellow
 printf(CSI "2;1H");
 PrintHorizontalBorder(Size, true);

 // // Print a bottom border
 printf(CSI "%d;1H", Size.Y-1);
 PrintHorizontalBorder(Size, false);

 wchar_t wch;

 // draw columns
 printf(CSI "3;1H");
 int line = 0;
 for (line = 0; line < iNumLines * iNumTabStops; line++)
 {
 PrintVerticalBorder();
 if (line + 1 != iNumLines * iNumTabStops) // don't advance to next line if this is the
last line
 printf("\t"); // advance to next tab stop

 }

 PrintStatusLine("Press any key to see text printed between tab stops.", Size);
 wch = _getwch();

 // Fill columns with output
 printf(CSI "3;1H");
 for (line = 0; line < iNumLines; line++)
 {
 int tab = 0;
 for (tab = 0; tab < iNumTabStops-1; tab++)
 {
 PrintVerticalBorder();
 printf("line=%d", line);
 printf("\t"); // advance to next tab stop
 }
 PrintVerticalBorder();// print border at right side
 if (line+1 != iNumLines)
 printf("\t"); // advance to next tab stop, (on the next line)
 }

 PrintStatusLine("Press any key to demonstrate scroll margins", Size);
 wch = _getwch();

 printf(CSI "3;1H");
 for (line = 0; line < iNumLines * 2; line++)
 {
 printf(CSI "K"); // clear the line
 int tab = 0;
 for (tab = 0; tab < iNumTabStops-1; tab++)
 {
 PrintVerticalBorder();
 printf("line=%d", line);
 printf("\t"); // advance to next tab stop
 }
 PrintVerticalBorder(); // print border at right side
 if (line+1 != iNumLines * 2)
 {
 printf("\n"); //Advance to next line. If we're at the bottom of the margins, the text
will scroll.
 printf("\r"); //return to first col in buffer
 }
 }

 PrintStatusLine("Press any key to exit", Size);
 wch = _getwch();

 // Exit the alternate buffer
 printf(CSI "?1049l");

}

Creating a Pseudoconsole session
12/1/2020 • 8 minutes to read • Edit Online

Preparing the communication channels

WARNINGWARNING

Creating the Pseudoconsole

The Windows Pseudoconsole, sometimes also referred to as pseudo console, ConPTY, or the Windows PTY, is a

mechanism designed for creating an external host for character-mode subsystem activities that replace the user

interactivity portion of the default console host window.

Hosting a pseudoconsole session is a bit different than a traditional console session. Traditional console sessions

automatically start when the operating system recognizes that a character-mode application is about to run. In

contrast, a pseudoconsole session and the communication channels need to be created by the hosting application

prior to creating the process with the child character-mode application to be hosted. The child process will still be

created using the CreateProcessCreateProcess function, but with some additional information that will direct the operating

system to establish the appropriate environment.

You can find additional background information about this system on the initial announcement blog post.

Complete examples of using the Pseudoconsole are available on our GitHub repository microsoft/terminal in the

samples directory.

The first step is to create a pair of synchronous communication channels that will be provided during creation of

the pseudoconsole session for bidirectional communication with the hosted application. These channels are

processed by the pseudoconsole system using ReadFileReadFile and WriteFileWriteFile with synchronous I/O. File or I/O device

handles like a file stream or pipe are acceptable as long as an OVERL APPEDOVERL APPED structure is not required for

asynchronous communication.

To prevent race conditions and deadlocks, we highly recommend that each of the communication channels is serviced on a

separate thread that maintains its own client buffer state and messaging queue inside your application. Servicing all of the

pseudoconsole activities on the same thread may result in a deadlock where one of the communications buffers is filled and

waiting for your action while you attempt to dispatch a blocking request on another channel.

With the communications channels that have been established, identify the "read" end of the input channel and the

"write" end of the output channel. This pair of handles is provided on calling CreatePseudoConsoleCreatePseudoConsole to create the

object.

On creation, a size representing the X and Y dimensions (in count of characters) is required. These are the

dimensions that will apply to the display surface for the final (terminal) presentation window. The values are used

to create an in-memory buffer inside the pseudoconsole system.

The buffer size provide answers to client character-mode applications that probe for information using the client-

side console functions like GetConsoleScreenBufferInfoExGetConsoleScreenBufferInfoEx and dictates the layout and positioning of text when

clients use functions like WriteConsoleOutputWriteConsoleOutput.

Finally, a flags field is provided on creation of a pseudoconsole to perform special functionality. By default, set this

to 0 to have no special functionality.

At this time, only one special flag is available to request the inheritence of the cursor position from a console

https://github.com/Microsoft/Console-Docs/blob/master/docs/creating-a-pseudoconsole-session.md
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://blogs.msdn.microsoft.com/commandline/2018/08/02/windows-command-line-introducing-the-windows-pseudo-console-conpty/
https://github.com/microsoft/terminal
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/desktop/sync/synchronization-and-overlapped-input-and-output
https://docs.microsoft.com/en-us/windows/desktop/api/minwinbase/ns-minwinbase-_overlapped

HRESULT SetUpPseudoConsole(COORD size)
{
 HRESULT hr = S_OK;

 // Create communication channels

 // - Close these after CreateProcess of child application with pseudoconsole object.
 HANDLE inputReadSide, outputWriteSide;

 // - Hold onto these and use them for communication with the child through the pseudoconsole.
 HANDLE outputReadSide, inputWriteSide;

 if (!CreatePipe(&inputReadSide, &inputWriteSide, NULL, 0))
 {
 return HRESULT_FROM_WIN32(GetLastError());
 }

 if (!CreatePipe(&outputReadSide, &outputWriteSide, NULL, 0))
 {
 return HRESULT_FROM_WIN32(GetLastError());
 }

 HPCON hPC;
 hr = CreatePseudoConsole(size, inputReadSide, outputWriteSide, 0, &hPC);
 if (FAILED(hr))
 {
 return hr;
 }

 // ...

}

NOTENOTE

Preparing for Creation of the Child Process

session already attached to the caller of the pseudoconsole API. This is intended for use in more advanced

scenarios where a hosting application that is preparing a pseudoconsole session is itself also a client character-

mode application of a another console environment.

A sample snippet is provided below utilizing CreatePipeCreatePipe to establish a pair of communication channels and create

the pseudoconsole.

This snippet is incomplete and used for demonstration of this specific call only. You will need to manage the lifetime of the

HANDLEHANDLEs appropriately. Failure to manage the lifetime of HANDLEHANDLEs correctly can result in deadlock scenarios, especially

with synchronous I/O calls.

Upon completion of the CreateProcessCreateProcess call to create the client character-mode application attached to the

pseudoconsole, the handles given during creation should be freed from this process. This will decrease the

reference count on the underlying device object and allow I/O operations to properly detect a broken channel

when the pseudoconsole session closes its copy of the handles.

The next phase is to prepare the STARTUPINFOEXSTARTUPINFOEX structure that will convey the pseudoconsole information while

starting the child process.

This structure contains the ability to provide complex startup information including attributes for process and

thread creation.

https://msdn.microsoft.com/library/windows/desktop/aa365152(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/ns-winbase-_startupinfoexw

HRESULT PrepareStartupInformation(HPCON hpc, STARTUPINFOEX* psi)
{
 // Prepare Startup Information structure
 STARTUPINFOEX si;
 ZeroMemory(&si, sizeof(si));
 si.StartupInfo.cb = sizeof(STARTUPINFOEX);

 // Discover the size required for the list
 size_t bytesRequired;
 InitializeProcThreadAttributeList(NULL, 1, 0, &bytesRequired);

 // Allocate memory to represent the list
 si.lpAttributeList = (PPROC_THREAD_ATTRIBUTE_LIST)HeapAlloc(GetProcessHeap(), 0, bytesRequired);
 if (!si.lpAttributeList)
 {
 return E_OUTOFMEMORY;
 }

 // Initialize the list memory location
 if (!InitializeProcThreadAttributeList(si.lpAttributeList, 1, 0, &bytesRequired))
 {
 HeapFree(GetProcessHeap(), 0, si.lpAttributeList);
 return HRESULT_FROM_WIN32(GetLastError());
 }

 // Set the pseudoconsole information into the list
 if (!UpdateProcThreadAttribute(attributeList,
 0,
 PROC_THREAD_ATTRIBUTE_PSEUDOCONSOLE,
 hpc,
 sizeof(hpc),
 NULL,
 NULL))
 {
 HeapFree(GetProcessHeap(), 0, si.lpAttributeList);
 return HRESULT_FROM_WIN32(GetLastError());
 }

 *psi = si;

 return S_OK;
}

Creating the Hosted Process

Use InitializeProcThreadAttr ibuteListInitializeProcThreadAttr ibuteList in a double-call fashion to first calculate the number of bytes required to

hold the list, allocate the memory requested, then call again providing the opaque memory pointer to have it set

up as the attribute list.

Next, call UpdateProcThreadAttr ibuteUpdateProcThreadAttr ibute passing the initialized attribute list with the flag

PROC_THREAD_ATTRIBUTE_PSEUDOCONSOLEPROC_THREAD_ATTRIBUTE_PSEUDOCONSOLE, the pseudoconsole handle, and the size of the pseudoconsole

handle.

Next, call CreateProcessCreateProcess passing the STARTUPINFOEXSTARTUPINFOEX structure along with the path to the executable and any

additional configuration information if applicable. It is important to set the

EXTENDED_STARTUPINFO_PRESENTEXTENDED_STARTUPINFO_PRESENT flag when calling to alert the system that the pseudoconsole reference is

contained in the extended information.

https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-initializeprocthreadattributelist
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/ns-winbase-_startupinfoexw

HRESULT SetUpPseudoConsole(COORD size)
{
 // ...

 PCWSTR childApplication = L"C:\\windows\\system32\\cmd.exe";

 // Create mutable text string for CreateProcessW command line string.
 const size_t charsRequired = wcslen(childApplication) + 1; // +1 null terminator
 PWSTR cmdLineMutable = (PWSTR)HeapAlloc(GetProcessHeap(), 0, sizeof(wchar_t) * charsRequired);

 if (!cmdLineMutable)
 {
 return E_OUTOFMEMORY;
 }

 wcscpy_s(cmdLineMutable, bytesRequired, childApplication);

 PROCESS_INFORMATION pi;
 ZeroMemory(&pi, sizeof(pi));

 // Call CreateProcess
 if (!CreateProcessW(NULL,
 cmdLineMutable,
 NULL,
 NULL,
 FALSE,
 EXTENDED_STARTUPINFO_PRESENT,
 NULL,
 NULL,
 &siEx.StartupInfo,
 &pi))
 {
 HeapFree(GetProcessHeap(), 0, cmdLineMutable);
 return HRESULT_FROM_WIN32(GetLastError());
 }

 // ...
}

NOTENOTE

Communicating with the Pseudoconsole Session

Closing the pseudoconsole session while the hosted process is still starting up and connecting can result in an error dialog

being shown by the client application. The same error dialog is shown if the hosted process is given an invalid pseudoconsole

handle for startup. To the hosted process initialization code, the two circumstances are identical. The pop-up dialog from the

hosted client application on failure will read 0xc0000142 with a localized message detailing failure to initialize.

Once the process is created successfully, the hosting application can use the write end of the input pipe to send

user interaction information into the pseudoconsole and the read end of the output pipe to receive graphical

presentation information from the pseudo console.

It is completely up to the hosting application to decide how to handle further activity. The hosting application could

launch a window in another thread to collect user interaction input and serialize it into the write end of the input

pipe for the pseudoconsole and the hosted character-mode application. Another thread could be launched to drain

the read end of the output pipe for the pseudoconsole, decode the text and virtual terminal sequence information,

and present that to the screen.

Threads could also be used to relay the information from the pseudoconsole channels out to a different channel or

device including a network to remote information to another process or machine and avoiding any local

Resizing the Pseudoconsole

// Theoretical event handler function with theoretical
// event that has associated display properties
// on Source property.
void OnWindowResize(Event e)
{
 // Retrieve width and height dimensions of display in
 // characters using theoretical height/width functions
 // that can retrieve the properties from the display
 // attached to the event.
 COORD size;
 size.X = GetViewWidth(e.Source);
 size.Y = GetViewHeight(e.Source);

 // Call pseudoconsole API to inform buffer dimension update
 ResizePseudoConsole(m_hpc, size);
}

Ending the Pseudoconsole Session

WARNINGWARNING

transcoding of the information.

Throughout the course of runtime, there may be a circumstance by which the size of the buffer needs to be

changed due to a user interaction or a request received out of band from another display/interaction device.

This can be done with the ResizePseudoConsoleResizePseudoConsole function specifying both the height and width of the buffer in a

count of characters.

To end the session, call the ClosePseudoConsoleClosePseudoConsole function with the handle from the original pseudoconsole

creation. Any attached client character-mode applications, such as the one from the CreateProcessCreateProcess call, will be

terminated when the session is closed. If the original child was a shell-type application that creates other processes,

any related attached processes in the tree will also be terminated.

Closing the session has several side effects which can result in a deadlock condition if the pseudoconsole is used in a single-

threaded synchronous fashion. The act of closing the pseudoconsole session may emit a final frame update to hOutput

which should be drained from the communications channel buffer. Additionally, if PSEUDOCONSOLE_INHERIT_CURSOR was

selected while creating the pseudoconsole, attempting to close the pseudoconsole without responding to the cursor

inheritence query message (received on hOutput and replied to via hInput) may result in another deadlock condition. It is

recommended that communications channels for the pseudoconsole are serviced on individual threads and remain drained

and processed until broken of their own accord by the client application exiting or by the completion of teardown activities in

calling the ClosePseudoConsoleClosePseudoConsole function.

https://msdn.microsoft.com/library/windows/desktop/ms682425

Console Functions
10/29/2020 • 4 minutes to read • Edit Online

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

AddConsoleAliasAddConsoleAlias Defines a console alias for the specified executable.

AllocConsoleAllocConsole Allocates a new console for the calling process.

AttachConsoleAttachConsole Attaches the calling process to the console of the
specified process.

ClosePseudoConsoleClosePseudoConsole Closes a pseudoconsole from the given handle.

CreatePseudoConsoleCreatePseudoConsole Allocates a new pseudoconsole for the calling process.

CreateConsoleScreenBufferCreateConsoleScreenBuffer Creates a console screen buffer.

FillConsoleOutputAttributeFillConsoleOutputAttribute Sets the text and background color attributes for a
specified number of character cells.

FillConsoleOutputCharacterFillConsoleOutputCharacter Writes a character to the console screen buffer a
specified number of times.

FlushConsoleInputBufferFlushConsoleInputBuffer Flushes the console input buffer.

FreeConsoleFreeConsole Detaches the calling process from its console.

GenerateConsoleCtrlEventGenerateConsoleCtrlEvent Sends a specified signal to a console process group that
shares the console associated with the calling process.

GetConsoleAliasGetConsoleAlias Retrieves the specified alias for the specified executable.

GetConsoleAliasesGetConsoleAliases Retrieves all defined console aliases for the specified
executable.

GetConsoleAliasesLengthGetConsoleAliasesLength Returns the size, in bytes, of the buffer needed to store
all of the console aliases for the specified executable.

GetConsoleAliasExesGetConsoleAliasExes Retrieves the names of all executables with console
aliases defined.

GetConsoleAliasExesLengthGetConsoleAliasExesLength Returns the size, in bytes, of the buffer needed to store
the names of all executables that have console aliases
defined.

GetConsoleCPGetConsoleCP Retrieves the input code page used by the console
associated with the calling process.

The following functions are used to access a console.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-functions.md

GetConsoleCursorInfoGetConsoleCursorInfo Retrieves information about the size and visibility of the
cursor for the specified console screen buffer.

GetConsoleDisplayModeGetConsoleDisplayMode Retrieves the display mode of the current console.

GetConsoleFontSizeGetConsoleFontSize Retrieves the size of the font used by the specified
console screen buffer.

GetConsoleHistor yInfoGetConsoleHistor yInfo Retrieves the history settings for the calling process's
console.

GetConsoleModeGetConsoleMode Retrieves the current input mode of a console's input
buffer or the current output mode of a console screen
buffer.

GetConsoleOriginalTitleGetConsoleOriginalTitle Retrieves the original title for the current console
window.

GetConsoleOutputCPGetConsoleOutputCP Retrieves the output code page used by the console
associated with the calling process.

GetConsoleProcessListGetConsoleProcessList Retrieves a list of the processes attached to the current
console.

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo Retrieves information about the specified console screen
buffer.

GetConsoleScreenBufferInfoExGetConsoleScreenBufferInfoEx Retrieves extended information about the specified
console screen buffer.

GetConsoleSelectionInfoGetConsoleSelectionInfo Retrieves information about the current console
selection.

GetConsoleTitleGetConsoleTitle Retrieves the title for the current console window.

GetConsoleWindowGetConsoleWindow Retrieves the window handle used by the console
associated with the calling process.

GetCurrentConsoleFontGetCurrentConsoleFont Retrieves information about the current console font.

GetCurrentConsoleFontExGetCurrentConsoleFontEx Retrieves extended information about the current
console font.

GetLargestConsoleWindowSizeGetLargestConsoleWindowSize Retrieves the size of the largest possible console window.

GetNumberOfConsoleInputEventsGetNumberOfConsoleInputEvents Retrieves the number of unread input records in the
console's input buffer.

GetNumberOfConsoleMouseButtonsGetNumberOfConsoleMouseButtons Retrieves the number of buttons on the mouse used by
the current console.

GetStdHandleGetStdHandle Retrieves a handle for the standard input, standard
output, or standard error device.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

HandlerRoutineHandlerRoutine An application-defined function used with the
SetConsoleCtrlHandlerSetConsoleCtrlHandler function.

PeekConsoleInputPeekConsoleInput Reads data from the specified console input buffer
without removing it from the buffer.

ReadConsoleReadConsole Reads character input from the console input buffer and
removes it from the buffer.

ReadConsoleInputReadConsoleInput Reads data from a console input buffer and removes it
from the buffer.

ReadConsoleOutputReadConsoleOutput Reads character and color attribute data from a
rectangular block of character cells in a console screen
buffer.

ReadConsoleOutputAttributeReadConsoleOutputAttribute Copies a specified number of foreground and
background color attributes from consecutive cells of a
console screen buffer.

ReadConsoleOutputCharacterReadConsoleOutputCharacter Copies a number of characters from consecutive cells of
a console screen buffer.

ResizePseudoConsoleResizePseudoConsole Resizes the internal buffers for a pseudoconsole to the
given size.

ScrollConsoleScreenBufferScrollConsoleScreenBuffer Moves a block of data in a screen buffer.

SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer Sets the specified screen buffer to be the currently
displayed console screen buffer.

SetConsoleCPSetConsoleCP Sets the input code page used by the console associated
with the calling process.

SetConsoleCtrlHandlerSetConsoleCtrlHandler Adds or removes an application-defined
HandlerRoutineHandlerRoutine from the list of handler functions for
the calling process.

SetConsoleCursorInfoSetConsoleCursorInfo Sets the size and visibility of the cursor for the specified
console screen buffer.

SetConsoleCursorPositionSetConsoleCursorPosition Sets the cursor position in the specified console screen
buffer.

SetConsoleDisplayModeSetConsoleDisplayMode Sets the display mode of the specified console screen
buffer.

SetConsoleHistor yInfoSetConsoleHistor yInfo Sets the history settings for the calling process's console.

SetConsoleModeSetConsoleMode Sets the input mode of a console's input buffer or the
output mode of a console screen buffer.

SetConsoleOutputCPSetConsoleOutputCP Sets the output code page used by the console
associated with the calling process.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

SetConsoleScreenBufferInfoExSetConsoleScreenBufferInfoEx Sets extended information about the specified console
screen buffer.

SetConsoleScreenBufferSizeSetConsoleScreenBufferSize Changes the size of the specified console screen buffer.

SetConsoleTextAttributeSetConsoleTextAttribute Sets the foreground (text) and background color
attributes of characters written to the console screen
buffer.

SetConsoleTitleSetConsoleTitle Sets the title for the current console window.

SetConsoleWindowInfoSetConsoleWindowInfo Sets the current size and position of a console screen
buffer's window.

SetCurrentConsoleFontExSetCurrentConsoleFontEx Sets extended information about the current console
font.

SetStdHandleSetStdHandle Sets the handle for the standard input, standard output,
or standard error device.

WriteConsoleWriteConsole Writes a character string to a console screen buffer
beginning at the current cursor location.

WriteConsoleInputWriteConsoleInput Writes data directly to the console input buffer.

WriteConsoleOutputWriteConsoleOutput Writes character and color attribute data to a specified
rectangular block of character cells in a console screen
buffer.

WriteConsoleOutputAttributeWriteConsoleOutputAttribute Copies a number of foreground and background color
attributes to consecutive cells of a console screen buffer.

WriteConsoleOutputCharacterWriteConsoleOutputCharacter Copies a number of characters to consecutive cells of a
console screen buffer.

F UN C T IO NF UN C T IO N DESC RIP T IO NDESC RIP T IO N

AddConsoleAlias function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI AddConsoleAlias(
 In LPCTSTR Source,
 In LPCTSTR Target,
 In LPCTSTR ExeName
);

Parameters

Return value

Remarks

TIPTIP

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Defines a console alias for the specified executable.

Source [in]

The console alias to be mapped to the text specified by Target.

Target [in]

The text to be substituted for Source. If this parameter is NULLNULL , then the console alias is removed.

ExeName [in]

The name of the executable file for which the console alias is to be defined.

If the function succeeds, the return value is TRUETRUE.

If the function fails, the return value is FALSEFALSE. To get extended error information, call GetLastErrorGetLastError .

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0501 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application acting as a shell or interpreter is

expected to maintain its own user-convenience functionality like line reading and manipulation behavior including aliases

and command history. Applications remoting via cross-platform utilities and transports like SSH may not work as expected

if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/addconsolealias.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names AddConsoleAliasWAddConsoleAliasW (Unicode) and AddConsoleAliasAAddConsoleAliasA
(ANSI)

See also

For an example, see Console Aliases.

Console Aliases

Console Functions

GetConsoleAliasGetConsoleAlias

GetConsoleAliasesGetConsoleAliases

GetConsoleAliasExesGetConsoleAliasExes

AllocConsole function
12/1/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI AllocConsole(void);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Allocates a new console for the calling process.

This function has no parameters.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

A process can be associated with only one console, so the AllocConsoleAllocConsole function fails if the calling process

already has a console. A process can use the FreeConsoleFreeConsole function to detach itself from its current console, then

it can call AllocConsoleAllocConsole to create a new console or AttachConsoleAttachConsole to attach to another console.

If the calling process creates a child process, the child inherits the new console.

AllocConsoleAllocConsole initializes standard input, standard output, and standard error handles for the new console. The

standard input handle is a handle to the console's input buffer, and the standard output and standard error

handles are handles to the console's screen buffer. To retrieve these handles, use the GetStdHandleGetStdHandle function.

This function is primarily used by a graphical user interface (GUI) application to create a console window. GUI

applications are initialized without a console. Console applications are initialized with a console, unless they are

created as detached processes (by calling the CreateProcessCreateProcess function with the DETACHED_PROCESSDETACHED_PROCESS flag).

https://github.com/Microsoft/Console-Docs/blob/master/docs/allocconsole.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms682425

See also
Console Functions

Consoles

AttachConsoleAttachConsole

CreateProcessCreateProcess

FreeConsoleFreeConsole

GetStdHandleGetStdHandle

https://msdn.microsoft.com/library/windows/desktop/ms682425

AttachConsole function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI AttachConsole(
 In DWORD dwProcessId
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

pid Use the console of the specified process.

ATTACH_PARENT_PROCESSATTACH_PARENT_PROCESS (DWORD)-1 Use the console of the parent of the current process.

Return value

Remarks

Attaches the calling process to the console of the specified process as a client application.

dwProcessId [in]

The identifier of the process whose console is to be used. This parameter can be one of the following values.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

A process can be attached to at most one console. If the calling process is already attached to a console, the error

code returned is ERROR_ACCESS_DENIEDERROR_ACCESS_DENIED (5). If the specified process does not have a console, the error

code returned is ERROR_INVALID_HANDLEERROR_INVALID_HANDLE (6). If the specified process does not exist, the error code

returned is ERROR_INVALID_PARAMETERERROR_INVALID_PARAMETER (87).

A process can use the FreeConsoleFreeConsole function to detach itself from its console. If other processes share the

console, the console is not destroyed, but the process that called FreeConsoleFreeConsole cannot refer to it. A console is

closed when the last process attached to it terminates or calls FreeConsoleFreeConsole. After a process calls FreeConsoleFreeConsole,

it can call the AllocConsoleAllocConsole function to create a new console or AttachConsoleAttachConsole to attach to another console.

This function is primarily useful to applications that were linked with /SUBSYSTEM:WINDOWS/SUBSYSTEM:WINDOWS , which implies

to the operating system that a console is not needed before entering the program's main method. In that

instance, the standard handles retrieved with GetStdHandleGetStdHandle will likely be invalid on startup until

AttachConsoleAttachConsole is called. The exception to this is if the application is launched with handle inheritance by its

parent process.

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0501 or later. For more

information, see Using the Windows Headers.

https://github.com/Microsoft/Console-Docs/blob/master/docs/attachconsole.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/en-us/cpp/build/reference/subsystem-specify-subsystem
https://msdn.microsoft.com/library/windows/desktop/aa383745

Requirements

Minimum supported client Windows XP [desktop apps only]

Minimum supported server Windows Server 2003 [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Consoles

AllocConsoleAllocConsole

FreeConsoleFreeConsole

GetConsoleProcessListGetConsoleProcessList

ClosePseudoConsole function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

void WINAPI ClosePseudoConsole(
 In HPCON hPC
);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 10 October 2018 Update (version 1809) [desktop
apps only]

Minimum supported server Windows Server 2019 [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

Closes a pseudoconsole from the given handle.

hPC [in]

A handle to an active pseudoconsole as opened by CreatePseudoConsole.

none

Upon closing a pseudoconsole, client applications attached to the session will be terminated as well.

A final painted frame may arrive on the hOutput handle originally provided to CreatePsuedoConsole when this

API is called. It is expected that the caller will drain this information from the communication channel buffer and

either present it or discard it. Failure to drain the buffer may cause the Close call to wait indefinitely until it is

drained or the communication channels are broken another way.

Pseudoconsoles

CreatePseudoConsoleCreatePseudoConsole

https://github.com/Microsoft/Console-Docs/blob/master/docs/closepseudoconsole.md

ResizePseudoConsoleResizePseudoConsole

CreateConsoleScreenBuffer function
10/29/2020 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

HANDLE WINAPI CreateConsoleScreenBuffer(
 In DWORD dwDesiredAccess,
 In DWORD dwShareMode,
 _In_opt_ const SECURITY_ATTRIBUTES *lpSecurityAttributes,
 In DWORD dwFlags,
 Reserved LPVOID lpScreenBufferData
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

FILE_SHARE_READFILE_SHARE_READ 0x00000001 Other open operations can be performed on the console
screen buffer for read access.

FILE_SHARE_WRITEFILE_SHARE_WRITE 0x00000002 Other open operations can be performed on the console
screen buffer for write access.

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Creates a console screen buffer.

dwDesiredAccess [in]

The access to the console screen buffer. For a list of access rights, see Console Buffer Security and Access Rights.

dwShareMode [in]

This parameter can be zero, indicating that the buffer cannot be shared, or it can be one or more of the following

values.

lpSecurityAttributes [in, optional]

A pointer to a SECURITY_ATTRIBUTESSECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited

by child processes. If lpSecurityAttributes is NULLNULL , the handle cannot be inherited. The lpSecurityDescr iptorlpSecurityDescr iptor

member of the structure specifies a security descriptor for the new console screen buffer. If lpSecurityAttributes is

NULLNULL , the console screen buffer gets a default security descriptor. The ACLs in the default security descriptor for

a console screen buffer come from the primary or impersonation token of the creator.

dwFlags [in]

The type of console screen buffer to create. The only supported screen buffer type is

CONSOLE_TEXTMODE_BUFFERCONSOLE_TEXTMODE_BUFFER .

https://github.com/Microsoft/Console-Docs/blob/master/docs/createconsolescreenbuffer.md
https://msdn.microsoft.com/library/windows/desktop/aa379560

Return value

Remarks

TIPTIP

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

lpScreenBufferData

Reserved; should be NULLNULL .

If the function succeeds, the return value is a handle to the new console screen buffer.

If the function fails, the return value is INVALID_HANDLE_VALUEINVALID_HANDLE_VALUE. To get extended error information, call

GetLastErrorGetLastError .

A console can have multiple screen buffers but only one active screen buffer. Inactive screen buffers can be

accessed for reading and writing, but only the active screen buffer is displayed. To make the new screen buffer

the active screen buffer, use the SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer function.

The newly created screen buffer will copy some properties from the active screen buffer at the time that this

function is called. The behavior is as follows:

Font - copied from active screen buffer

Display Window Size - copied from active screen buffer

Buffer Size - matched to Display Window Size (NOTNOT copied)

Default Attributes (colors) - copied from active screen buffer

Default Popup Attributes (colors) - copied from active screen buffer

The calling process can use the returned handle in any function that requires a handle to a console screen buffer,

subject to the limitations of access specified by the dwDesiredAccess parameter.

The calling process can use the DuplicateHandleDuplicateHandle function to create a duplicate screen buffer handle that has

different access or inheritability from the original handle. However, DuplicateHandleDuplicateHandle cannot be used to create a

duplicate that is valid for a different process (except through inheritance).

To close the console screen buffer handle, use the CloseHandleCloseHandle function.

This API is not recommended but it does have an approximate vir tual terminalvir tual terminal equivalent in the alternate screenalternate screen

bufferbuffer sequence. Setting the alternate screen buffer can provide an application with a separate, isolated space for drawing

over the course of its session runtime while preserving the content that was displayed by the application's invoker. This

maintains that drawing information for simple restoration on process exit.

For an example, see Reading and Writing Blocks of Characters and Attributes.

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms724251
https://msdn.microsoft.com/library/windows/desktop/ms724211

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Screen Buffers

CloseHandleCloseHandle

DuplicateHandleDuplicateHandle

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

SECURITY_ATTRIBUTESSECURITY_ATTRIBUTES

SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer

SetConsoleScreenBufferS izeSetConsoleScreenBufferS ize

https://msdn.microsoft.com/library/windows/desktop/ms724211
https://msdn.microsoft.com/library/windows/desktop/ms724251
https://msdn.microsoft.com/library/windows/desktop/aa379560

CreatePseudoConsole function
12/16/2020 • 2 minutes to read • Edit Online

Syntax

HRESULT WINAPI CreatePseudoConsole(
 In COORD size,
 In HANDLE hInput,
 In HANDLE hOutput,
 In DWORD dwFlags,
 Out HPCON* phPC
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

00 Perform a standard pseudoconsole creation.

PSEUDOCONSOLE_INHERIT_CURSORPSEUDOCONSOLE_INHERIT_CURSOR (DWORD)1 The created pseudoconsole session will attempt to inherit the
cursor position of the parent console.

Return value

Remarks

Creates a new pseudoconsole object for the calling process.

size [in]

The dimensions of the window/buffer in count of characters that will be used on initial creation of the

pseudoconsole. This can be adjusted later with ResizePseudoConsole.

hInput [in]

An open handle to a stream of data that represents user input to the device. This is currently restricted to

synchronous I/O.

hOutput [in]

An open handle to a stream of data that represents application output from the device. This is currently restricted

to synchronous I/O.

dwFlags [in]

The value can be one of the following:

phPC [out]

Pointer to a location that will receive a handle to the new pseudoconsole device.

Type: HRESULTHRESULT

If this method succeeds, it returns S_OKS_OK. Otherwise, it returns an HRESULTHRESULT error code.

This function is primarily used by applications attempting to be a terminal window for a command-line user

interface (CUI) application. The callers become responsible for presentation of the information on the output

https://github.com/Microsoft/Console-Docs/blob/master/docs/createpseudoconsole.md
https://docs.microsoft.com/en-us/windows/desktop/sync/synchronization-and-overlapped-input-and-output
https://docs.microsoft.com/en-us/windows/desktop/sync/synchronization-and-overlapped-input-and-output

Examples

Requirements

Minimum supported client Windows 10 October 2018 Update (version 1809) [desktop
apps only]

Minimum supported server Windows Server 2019 [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

stream and for collecting user input and serializing it into the input stream.

The input and output streams encoded as UTF-8 contain plain text interleaved with Virtual Terminal Sequences.

On the output stream, the virtual terminal sequences can be decoded by the calling application to layout and

present the plain text in a display window.

On the input stream, plain text represents standard keyboard keys input by a user. More complicated operations

are represented by encoding control keys and mouse movements as virtual terminal sequences embedded in this

stream.

The handle created by this function must be closed with ClosePseudoConsole when operations are complete.

If using PSEUDOCONSOLE_INHERIT_CURSOR , the calling application should be prepared to respond to the request for

the cursor state in an asynchronous fashion on a background thread by forwarding or interpreting the request for

cursor information that will be received on hOutput and replying on hInput . Failure to do so may cause the

calling application to hang while making another request of the pseudoconsole system.

For a full walkthrough on using this function to establish a pseudoconsole session, please see Creating a

Pseudoconsole Session.

Pseudoconsoles

Creating a Pseudoconsole Session

ResizePseudoConsoleResizePseudoConsole

ClosePseudoConsoleClosePseudoConsole

FillConsoleOutputAttribute function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI FillConsoleOutputAttribute(
 In HANDLE hConsoleOutput,
 In WORD wAttribute,
 In DWORD nLength,
 In COORD dwWriteCoord,
 Out LPDWORD lpNumberOfAttrsWritten
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Sets the character attributes for a specified number of character cells, beginning at the specified coordinates in a

screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

wAttribute [in]

The attributes to use when writing to the console screen buffer. For more information, see Character Attributes.

nLength [in]

The number of character cells to be set to the specified color attributes.

dwWriteCoord [in]

A COORDCOORD structure that specifies the character coordinates of the first cell whose attributes are to be set.

lpNumberOfAttrsWritten [out]

A pointer to a variable that receives the number of character cells whose attributes were actually set.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

If the number of character cells whose attributes are to be set extends beyond the end of the specified row in the

https://github.com/Microsoft/Console-Docs/blob/master/docs/fillconsoleoutputattribute.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

console screen buffer, the cells of the next row are set. If the number of cells to write to extends beyond the end of

the console screen buffer, the cells are written up to the end of the console screen buffer.

The character values at the positions written to are not changed.

This API is not recommended and does not have a specific vir tual terminalvir tual terminal equivalent. Filling the region outside the

viewable window is not supported and is reserved for the terminal's history space. Filling a visible region with new text or

color is performed through moving the cursormoving the cursor , setting the new attributessetting the new attributes , then writing the desired text for that

region, repeating characters if necessary for the length of the fill run. Additional cursor movement may be required followed

by writing the desired text to fill a rectangular region. The client application is expected to keep its own memory of what is

on the screen and is not able to query the remote state. More information can be found in classic console versusclassic console versus

vir tual terminalvir tual terminal documentation.

Console Functions

COORDCOORD

FillConsoleOutputCharacterFillConsoleOutputCharacter

Low-Level Console Output Functions

SetConsoleTextAttr ibuteSetConsoleTextAttr ibute

WriteConsoleOutputAttr ibuteWriteConsoleOutputAttr ibute

FillConsoleOutputCharacter function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI FillConsoleOutputCharacter(
 In HANDLE hConsoleOutput,
 In TCHAR cCharacter,
 In DWORD nLength,
 In COORD dwWriteCoord,
 Out LPDWORD lpNumberOfCharsWritten
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Writes a character to the console screen buffer a specified number of times, beginning at the specified

coordinates.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

cCharacter [in]

The character to be written to the console screen buffer.

nLength [in]

The number of character cells to which the character should be written.

dwWriteCoord [in]

A COORDCOORD structure that specifies the character coordinates of the first cell to which the character is to be written.

lpNumberOfCharsWritten [out]

A pointer to a variable that receives the number of characters actually written to the console screen buffer.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

If the number of characters to write to extends beyond the end of the specified row in the console screen buffer,

https://github.com/Microsoft/Console-Docs/blob/master/docs/fillconsoleoutputcharacter.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names FillConsoleOutputCharacterWFillConsoleOutputCharacterW (Unicode) and
FillConsoleOutputCharacterAFillConsoleOutputCharacterA (ANSI)

See also

characters are written to the next row. If the number of characters to write to extends beyond the end of the

console screen buffer, the characters are written up to the end of the console screen buffer.

The attribute values at the positions written are not changed.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode con cpmode con cp

select=select= commands, but it is not recommended for new development.

This API is not recommended and does not have a specific vir tual terminalvir tual terminal equivalent. Filling the region outside the

viewable window is not supported and is reserved for the terminal's history space. Filling a visible region with new text or

color is performed through moving the cursormoving the cursor , setting the new attributessetting the new attributes , then writing the desired text for that

region, repeating characters if necessary for the length of the fill run. Additional cursor movement may be required followed

by writing the desired text to fill a rectangular region. The client application is expected to keep its own memory of what is

on the screen and is not able to query the remote state. More information can be found in classic console versusclassic console versus

vir tual terminalvir tual terminal documentation.

Console Functions

COORDCOORD

FillConsoleOutputAttr ibuteFillConsoleOutputAttr ibute

Low-Level Console Output Functions

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

WriteConsoleOutputCharacterWriteConsoleOutputCharacter

FlushConsoleInputBuffer function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI FlushConsoleInputBuffer(
 In HANDLE hConsoleInput
);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Flushes the console input buffer. All input records currently in the input buffer are discarded.

hConsoleInput [in]

A handle to the console input buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. Attempting to empty the input queue all

at once can destroy state in the queue in an unexpected manner.

https://github.com/Microsoft/Console-Docs/blob/master/docs/flushconsoleinputbuffer.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Low-Level Console Input Functions

GetNumberOfConsoleInputEventsGetNumberOfConsoleInputEvents

PeekConsoleInputPeekConsoleInput

ReadConsoleInputReadConsoleInput

WriteConsoleInputWriteConsoleInput

FreeConsole function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI FreeConsole(void);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

Detaches the calling process from its console.

This function has no parameters.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

A process can be attached to at most one console. If the calling process is not already attached to a console, the

error code returned is ERROR_INVALID_PARAMETERERROR_INVALID_PARAMETER (87).

A process can use the FreeConsoleFreeConsole function to detach itself from its console. If other processes share the

console, the console is not destroyed, but the process that called FreeConsoleFreeConsole cannot refer to it. A console is

closed when the last process attached to it terminates or calls FreeConsoleFreeConsole. After a process calls FreeConsoleFreeConsole,

it can call the AllocConsoleAllocConsole function to create a new console or AttachConsoleAttachConsole to attach to another console.

AllocConsoleAllocConsole

AttachConsoleAttachConsole

https://github.com/Microsoft/Console-Docs/blob/master/docs/freeconsole.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Console Functions

Consoles

GenerateConsoleCtrlEvent function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI GenerateConsoleCtrlEvent(
 In DWORD dwCtrlEvent,
 In DWORD dwProcessGroupId
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

CTRL_C_EVENTCTRL_C_EVENT 0 Generates a CTRL+C signal. This signal cannot be generated
for process groups. If dwProcessGroupId is nonzero, this
function will succeed, but the CTRL+C signal will not be
received by processes within the specified process group.

CTRL_BREAK_EVENTCTRL_BREAK_EVENT 1 Generates a CTRL+BREAK signal.

Return value

Remarks

Sends a specified signal to a console process group that shares the console associated with the calling process.

dwCtrlEvent [in]

The type of signal to be generated. This parameter can be one of the following values.

dwProcessGroupId [in]

The identifier of the process group to receive the signal. A process group is created when the

CREATE_NEW_PROCESS_GROUPCREATE_NEW_PROCESS_GROUP flag is specified in a call to the CreateProcessCreateProcess function. The process

identifier of the new process is also the process group identifier of a new process group. The process group

includes all processes that are descendants of the root process. Only those processes in the group that share the

same console as the calling process receive the signal. In other words, if a process in the group creates a new

console, that process does not receive the signal, nor do its descendants.

If this parameter is zero, the signal is generated in all processes that share the console of the calling process.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

GenerateConsoleCtr lEventGenerateConsoleCtr lEvent causes the control handler functions of processes in the target group to be called.

All console processes have a default handler function that calls the ExitProcessExitProcess function. A console process can

use the SetConsoleCtr lHandlerSetConsoleCtr lHandler function to install or remove other handler functions.

SetConsoleCtr lHandlerSetConsoleCtr lHandler can also enable an inheritable attribute that causes the calling process to ignore

CTRL+C signals. If GenerateConsoleCtr lEventGenerateConsoleCtr lEvent sends a CTRL+C signal to a process for which this attribute is

enabled, the handler functions for that process are not called. CTRL+BREAK signals always cause the handler

https://github.com/Microsoft/Console-Docs/blob/master/docs/generateconsolectrlevent.md
https://msdn.microsoft.com/library/windows/desktop/ms682425
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms682658

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

functions to be called.

Console Control Handlers

Console Functions

CreateProcessCreateProcess

ExitProcessExitProcess

SetConsoleCtr lHandlerSetConsoleCtr lHandler

https://msdn.microsoft.com/library/windows/desktop/ms682425
https://msdn.microsoft.com/library/windows/desktop/ms682658

GetConsoleAlias function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

DWORD WINAPI GetConsoleAlias(
 In LPTSTR lpSource,
 Out LPTSTR lpTargetBuffer,
 In DWORD TargetBufferLength,
 In LPTSTR lpExeName
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Retrieves the text for the specified console alias and executable.

lpSource [in]

The console alias whose text is to be retrieved.

lpTargetBuffer [out]

A pointer to a buffer that receives the text associated with the console alias.

TargetBufferLength [in]

The size of the buffer pointed to by lpTargetBuffer, in bytes.

lpExeName [in]

The name of the executable file.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0501 or later. For more

information, see Using the Windows Headers.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolealias.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names GetConsoleAliasWGetConsoleAliasW (Unicode) and GetConsoleAliasAGetConsoleAliasA
(ANSI)

See also

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application acting as a shell or interpreter is

expected to maintain its own user-convenience functionality like line reading and manipulation behavior including aliases

and command history. Applications remoting via cross-platform utilities and transports like SSH may not work as expected if

using this API.

Console Aliases

Console Functions

AddConsoleAliasAddConsoleAlias

GetConsoleAliasesGetConsoleAliases

GetConsoleAliasExesGetConsoleAliasExes

GetConsoleAliases function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

DWORD WINAPI GetConsoleAliases(
 Out LPTSTR lpAliasBuffer,
 In DWORD AliasBufferLength,
 In LPTSTR lpExeName
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Retrieves all defined console aliases for the specified executable.

lpAliasBuffer [out]

A pointer to a buffer that receives the aliases.

The format of the data is as follows: Source1=Target1\0Source2=Target2\0... SourceN=TargetN\0, where N is the

number of console aliases defined.

AliasBufferLength [in]

The size of the buffer pointed to by lpAliasBuffer, in bytes.

lpExeName [in]

The executable file whose aliases are to be retrieved.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

To determine the required size for the lpExeName buffer, use the GetConsoleAliasesLengthGetConsoleAliasesLength function.

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0501 or later. For more

information, see Using the Windows Headers.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolealiases.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names GetConsoleAliasesWGetConsoleAliasesW (Unicode) and GetConsoleAliasesAGetConsoleAliasesA
(ANSI)

See also

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application acting as a shell or interpreter is

expected to maintain its own user-convenience functionality like line reading and manipulation behavior including aliases

and command history. Applications remoting via cross-platform utilities and transports like SSH may not work as expected

if using this API.

AddConsoleAliasAddConsoleAlias

Console Aliases

Console Functions

GetConsoleAliasGetConsoleAlias

GetConsoleAliasesLengthGetConsoleAliasesLength

GetConsoleAliasExesGetConsoleAliasExes

GetConsoleAliasesLength function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

DWORD WINAPI GetConsoleAliasesLength(
 In LPTSTR lpExeName
);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves the required size for the buffer used by the GetConsoleAliasesGetConsoleAliases function.

lpExeName [in]

The name of the executable file whose console aliases are to be retrieved.

The size of the buffer required to store all console aliases defined for this executable file, in bytes.

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0501 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application acting as a shell or interpreter is

expected to maintain its own user-convenience functionality like line reading and manipulation behavior including aliases and

command history. Applications remoting via cross-platform utilities and transports like SSH may not work as expected if

using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolealiaseslength.md
https://msdn.microsoft.com/library/windows/desktop/aa383745

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names GetConsoleAliasesLengthWGetConsoleAliasesLengthW (Unicode) and
GetConsoleAliasesLengthAGetConsoleAliasesLengthA (ANSI)

See also
AddConsoleAliasAddConsoleAlias

Console Aliases

Console Functions

GetConsoleAliasGetConsoleAlias

GetConsoleAliasesGetConsoleAliases

GetConsoleAliasExesGetConsoleAliasExes

GetConsoleAliasExes function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

DWORD WINAPI GetConsoleAliasExes(
 Out LPTSTR lpExeNameBuffer,
 In DWORD ExeNameBufferLength
);

Parameters

Return value

Remarks

TIPTIP

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Retrieves the names of all executable files with console aliases defined.

lpExeNameBuffer [out]

A pointer to a buffer that receives the names of the executable files.

ExeNameBufferLength [in]

The size of the buffer pointed to by lpExeNameBuffer, in bytes.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

To determine the required size for the lpExeNameBuffer buffer, use the GetConsoleAliasExesLengthGetConsoleAliasExesLength function.

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0501 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application acting as a shell or interpreter is

expected to maintain its own user-convenience functionality like line reading and manipulation behavior including aliases

and command history. Applications remoting via cross-platform utilities and transports like SSH may not work as expected

if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolealiasexes.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names GetConsoleAliasExesWGetConsoleAliasExesW (Unicode) and
GetConsoleAliasExesAGetConsoleAliasExesA (ANSI)

See also
AddConsoleAliasAddConsoleAlias

Console Aliases

Console Functions

GetConsoleAliasGetConsoleAlias

GetConsoleAliasExesLengthGetConsoleAliasExesLength

GetConsoleAliasesGetConsoleAliases

GetConsoleAliasExesLength function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

DWORD WINAPI GetConsoleAliasExesLength(void);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves the required size for the buffer used by the GetConsoleAliasExesGetConsoleAliasExes function.

This function has no parameters.

The size of the buffer required to store the names of all executable files that have console aliases defined, in bytes.

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0501 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application acting as a shell or interpreter is

expected to maintain its own user-convenience functionality like line reading and manipulation behavior including aliases and

command history. Applications remoting via cross-platform utilities and transports like SSH may not work as expected if

using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolealiasexeslength.md
https://msdn.microsoft.com/library/windows/desktop/aa383745

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names GetConsoleAliasExesLengthWGetConsoleAliasExesLengthW (Unicode) and
GetConsoleAliasExesLengthAGetConsoleAliasExesLengthA (ANSI)

See also
AddConsoleAliasAddConsoleAlias

Console Aliases

Console Functions

GetConsoleAliasGetConsoleAlias

GetConsoleAliasesGetConsoleAliases

GetConsoleAliasExesGetConsoleAliasExes

GetConsoleCP function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

UINT WINAPI GetConsoleCP(void);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

Retrieves the input code page used by the console associated with the calling process. A console uses its input

code page to translate keyboard input into the corresponding character value.

This function has no parameters.

The return value is a code that identifies the code page. For a list of identifiers, see Code Page Identifiers.

If the return value is zero, the function has failed. To get extended error information, call GetLastErrorGetLastError .

A code page maps 256 character codes to individual characters. Different code pages include different special

characters, typically customized for a language or a group of languages. To retrieve more information about a

code page, including it's name, see the GetCPInfoExGetCPInfoEx function.

To set a console's input code page, use the SetConsoleCPSetConsoleCP function. To set and query a console's output code

page, use the SetConsoleOutputCPSetConsoleOutputCP and GetConsoleOutputCPGetConsoleOutputCP functions.

Console Code Pages

Console Functions

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolecp.md
https://msdn.microsoft.com/library/windows/desktop/dd317756
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/dd318081

GetConsoleOutputCPGetConsoleOutputCP

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

GetConsoleCursorInfo function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI GetConsoleCursorInfo(
 In HANDLE hConsoleOutput,
 Out PCONSOLE_CURSOR_INFO lpConsoleCursorInfo
);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Retrieves information about the size and visibility of the cursor for the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpConsoleCursorInfo [out]

A pointer to a CONSOLE_CURSOR_INFOCONSOLE_CURSOR_INFO structure that receives information about the console's cursor.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolecursorinfo.md
https://docs.microsoft.com/en-us/windows/console/console-cursor-info-str
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Screen Buffers

CONSOLE_CURSOR_INFOCONSOLE_CURSOR_INFO

SetConsoleCursorInfoSetConsoleCursorInfo

https://docs.microsoft.com/en-us/windows/console/console-cursor-info-str

GetConsoleDisplayMode function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI GetConsoleDisplayMode(
 Out LPDWORD lpModeFlags
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

CONSOLE_FULLSCREENCONSOLE_FULLSCREEN 1 Full-screen console. The console is in this mode as soon as the
window is maximized. At this point, the transition to full-
screen mode can still fail.

CONSOLE_FULLSCREEN_HARDWARECONSOLE_FULLSCREEN_HARDWARE 2 Full-screen console communicating directly with the video
hardware. This mode is set after the console is in
CONSOLE_FULLSCREENCONSOLE_FULLSCREEN mode to indicate that the
transition to full-screen mode has completed.

NOTENOTE

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves the display mode of the current console.

lpModeFlags [out]

The display mode of the console. This parameter can be one or more of the following values.

The transition to a 100% full screen video hardware mode was removed in Windows Vista with the replatforming of the

graphics stack to WDDM. On later versions of Windows, the maximum resulting state is CONSOLE_FULLSCREENCONSOLE_FULLSCREEN

representing a frameless window that appears full screen but isn't in exclusive control of the hardware.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0500 or later. For more

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsoledisplaymode.md
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/introduction-to-the-windows-vista-and-later-display-driver-model
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Requirements

Minimum supported client Windows XP [desktop apps only]

Minimum supported server Windows Server 2003 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

Console Functions

Console Modes

SetConsoleDisplayModeSetConsoleDisplayMode

https://msdn.microsoft.com/library/windows/desktop/aa383745

GetConsoleFontSize function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

COORD WINAPI GetConsoleFontSize(
 In HANDLE hConsoleOutput,
 In DWORD nFont
);

Parameters

Return value

Remarks

TIPTIP

Requirements

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves the size of the font used by the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

nFont [in]

The index of the font whose size is to be retrieved. This index is obtained by calling the GetCurrentConsoleFontGetCurrentConsoleFont

function.

If the function succeeds, the return value is a COORDCOORD structure that contains the width and height of each

character in the font, in logical units. The XX member contains the width, while the YY member contains the height.

If the function fails, the width and the height are zero. To get extended error information, call GetLastErrorGetLastError .

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0500 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolefontsize.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

Minimum supported client Windows XP [desktop apps only]

Minimum supported server Windows Server 2003 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Screen Buffers

COORDCOORD

GetCurrentConsoleFontGetCurrentConsoleFont

GetConsoleHistoryInfo function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI GetConsoleHistoryInfo(
 Out PCONSOLE_HISTORY_INFO lpConsoleHistoryInfo
);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows Vista [desktop apps only]

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves the history settings for the calling process's console.

lpConsoleHistoryInfo [out]

A pointer to a CONSOLE_HISTORY_INFOCONSOLE_HISTORY_INFO structure that receives the history settings for the calling process's

console.

If the function succeeds the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

If the calling process is not a console process, the function fails and sets the last error to

ERROR_ACCESS_DENIEDERROR_ACCESS_DENIED.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application acting as a shell or interpreter is

expected to maintain its own user-convenience functionality like line reading and manipulation behavior including aliases and

command history. Applications remoting via cross-platform utilities and transports like SSH may not work as expected if

using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolehistoryinfo.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

CONSOLE_HISTORY_INFOCONSOLE_HISTORY_INFO

SetConsoleHistor yInfoSetConsoleHistor yInfo

GetConsoleMode function
10/29/2020 • 6 minutes to read • Edit Online

Syntax

BOOL WINAPI GetConsoleMode(
 In HANDLE hConsoleHandle,
 Out LPDWORD lpMode
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

ENABLE_ECHO_INPUTENABLE_ECHO_INPUT 0x0004 Characters read by the ReadFileReadFile or ReadConsoleReadConsole function
are written to the active screen buffer as they are read. This
mode can be used only if the ENABLE_LINE_INPUTENABLE_LINE_INPUT mode
is also enabled.

ENABLE_INSERT_MODEENABLE_INSERT_MODE 0x0020 When enabled, text entered in a console window will be
inserted at the current cursor location and all text following
that location will not be overwritten. When disabled, all
following text will be overwritten.

ENABLE_LINE_INPUTENABLE_LINE_INPUT 0x0002 The ReadFileReadFile or ReadConsoleReadConsole function returns only when a
carriage return character is read. If this mode is disabled, the
functions return when one or more characters are available.

ENABLE_MOUSE_INPUTENABLE_MOUSE_INPUT 0x0010 If the mouse pointer is within the borders of the console
window and the window has the keyboard focus, mouse
events generated by mouse movement and button presses
are placed in the input buffer. These events are discarded by
ReadFileReadFile or ReadConsoleReadConsole, even when this mode is enabled.

Retrieves the current input mode of a console's input buffer or the current output mode of a console screen

buffer.

hConsoleHandle [in]

A handle to the console input buffer or the console screen buffer. The handle must have the GENERIC_READGENERIC_READ

access right. For more information, see Console Buffer Security and Access Rights.

lpMode [out]

A pointer to a variable that receives the current mode of the specified buffer.

If the hConsoleHandle parameter is an input handle, the mode can be one or more of the following values. When

a console is created, all input modes except ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT are enabled by default.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolemode.md
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467

ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT 0x0001 CTRL+C is processed by the system and is not placed in the
input buffer. If the input buffer is being read by ReadFileReadFile or
ReadConsoleReadConsole, other control keys are processed by the
system and are not returned in the ReadFileReadFile or
ReadConsoleReadConsole buffer. If the ENABLE_LINE_INPUTENABLE_LINE_INPUT mode is
also enabled, backspace, carriage return, and line feed
characters are handled by the system.

ENABLE_QUICK_EDIT_MODEENABLE_QUICK_EDIT_MODE 0x0040 This flag enables the user to use the mouse to select and
edit text.

To enable this mode, use
ENABLE_QUICK_EDIT_MODE | ENABLE_EXTENDED_FLAGS . To

disable this mode, use ENABLE_EXTENDED_FL AGSENABLE_EXTENDED_FL AGS
without this flag.

ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT 0x0008 User interactions that change the size of the console screen
buffer are reported in the console's input buffer. Information
about these events can be read from the input buffer by
applications using the ReadConsoleInputReadConsoleInput function, but not
by those using ReadFileReadFile or ReadConsoleReadConsole.

ENABLE_VIRTUAL_TERMINAL_INPUTENABLE_VIRTUAL_TERMINAL_INPUT 0x0200 Setting this flag directs the Virtual Terminal processing
engine to convert user input received by the console window
into Console Vir tual Terminal SequencesConsole Vir tual Terminal Sequences that can be
retrieved by a supporting application through WriteFileWriteFile or
WriteConsoleWriteConsole functions.

The typical usage of this flag is intended in conjunction with
ENABLE_VIRTUAL_TERMINAL_PROCESSING on the output
handle to connect to an application that communicates
exclusively via virtual terminal sequences.

VA L UEVA L UE M EA N IN GM EA N IN G

VA L UEVA L UE M EA N IN GM EA N IN G

ENABLE_PROCESSED_OUTPUTENABLE_PROCESSED_OUTPUT 0x0001 Characters written by the WriteFileWriteFile or WriteConsoleWriteConsole
function or echoed by the ReadFileReadFile or ReadConsoleReadConsole
function are parsed for ASCII control sequences, and the
correct action is performed. Backspace, tab, bell, carriage
return, and line feed characters are processed.

ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT 0x0002 When writing with WriteFileWriteFile or WriteConsoleWriteConsole or echoing
with ReadFileReadFile or ReadConsoleReadConsole, the cursor moves to the
beginning of the next row when it reaches the end of the
current row. This causes the rows displayed in the console
window to scroll up automatically when the cursor advances
beyond the last row in the window. It also causes the
contents of the console screen buffer to scroll up
(../discarding the top row of the console screen buffer) when
the cursor advances beyond the last row in the console
screen buffer. If this mode is disabled, the last character in
the row is overwritten with any subsequent characters.

If the hConsoleHandle parameter is a screen buffer handle, the mode can be one or more of the following

values. When a screen buffer is created, both output modes are enabled by default.

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467

ENABLE_VIRTUAL_TERMINAL_PROCESSINGENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004 When writing with WriteFileWriteFile or WriteConsoleWriteConsole, characters
are parsed for VT100 and similar control character sequences
that control cursor movement, color/font mode, and other
operations that can also be performed via the existing
Console APIs. For more information, see Console Vir tualConsole Vir tual
Terminal SequencesTerminal Sequences .

DISABLE_NEWLINE_AUTO_RETURNDISABLE_NEWLINE_AUTO_RETURN 0x0008 When writing with WriteFileWriteFile or WriteConsoleWriteConsole, this adds
an additional state to end-of-line wrapping that can delay
the cursor move and buffer scroll operations.

Normally when ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT is set
and text reaches the end of the line, the cursor will
immediately move to the next line and the contents of the
buffer will scroll up by one line. In contrast with this flag set,
the scroll operation and cursor move is delayed until the
next character arrives. The written character will be printed in
the final position on the line and the cursor will remain
above this character as if
ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT was off, but the next
printable character will be printed as if
ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT is on. No overwrite will
occur. Specifically, the cursor quickly advances down to the
following line, a scroll is performed if necessary, the character
is printed, and the cursor advances one more position.

The typical usage of this flag is intended in conjunction with
setting ENABLE_VIRTUAL_TERMINAL_PROCESSINGENABLE_VIRTUAL_TERMINAL_PROCESSING to
better emulate a terminal emulator where writing the final
character on the screen (../in the bottom right corner)
without triggering an immediate scroll is the desired
behavior.

ENABLE_LVB_GRID_WORLDWIDEENABLE_LVB_GRID_WORLDWIDE 0x0010 The APIs for writing character attributes including
WriteConsoleOutputWriteConsoleOutput and
WriteConsoleOutputAttributeWriteConsoleOutputAttribute allow the usage of flags
from character attributescharacter attributes to adjust the color of the
foreground and background of text. Additionally, a range of
DBCS flags was specified with the COMMON_LVB prefix.
Historically, these flags only functioned in DBCS code pages
for Chinese, Japanese, and Korean languages.

With exception of the leading byte and trailing byte flags, the
remaining flags describing line drawing and reverse video
(../swap foreground and background colors) can be useful for
other languages to emphasize portions of output.

Setting this console mode flag will allow these attributes to
be used in every code page on every language.

It is off by default to maintain compatibility with known
applications that have historically taken advantage of the
console ignoring these flags on non-CJK machines to store
bits in these fields for their own purposes or by accident.

Note that using the
ENABLE_VIRTUAL_TERMINAL_PROCESSING mode can result
in LVB grid and reverse video flags being set while this flag is
still off if the attached application requests underlining or
inverse video via Console Vir tual Terminal SequencesConsole Vir tual Terminal Sequences .

VA L UEVA L UE M EA N IN GM EA N IN G

https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365747

Return value

Remarks

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

A console consists of an input buffer and one or more screen buffers. The mode of a console buffer determines

how the console behaves during input or output (I/O) operations. One set of flag constants is used with input

handles, and another set is used with screen buffer (output) handles. Setting the output modes of one screen

buffer does not affect the output modes of other screen buffers.

The ENABLE_LINE_INPUTENABLE_LINE_INPUT and ENABLE_ECHO_INPUTENABLE_ECHO_INPUT modes only affect processes that use ReadFileReadFile or

ReadConsoleReadConsole to read from the console's input buffer. Similarly, the ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT mode

primarily affects ReadFileReadFile and ReadConsoleReadConsole users, except that it also determines whether CTRL+C input is

reported in the input buffer (to be read by the ReadConsoleInputReadConsoleInput function) or is passed to a function defined

by the application.

The ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT and ENABLE_MOUSE_INPUTENABLE_MOUSE_INPUT modes determine whether user interactions

involving window resizing and mouse actions are reported in the input buffer or discarded. These events can be

read by ReadConsoleInputReadConsoleInput, but they are always filtered by ReadFileReadFile and ReadConsoleReadConsole.

The ENABLE_PROCESSED_OUTPUTENABLE_PROCESSED_OUTPUT and ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT modes only affect processes

using ReadFileReadFile or ReadConsoleReadConsole and WriteFileWriteFile or WriteConsoleWriteConsole.

To change a console's I/O modes, call SetConsoleModeSetConsoleMode function.

For an example, see Reading Input Buffer Events.

Console Functions

Console Modes

ReadConsoleReadConsole

ReadConsoleInputReadConsoleInput

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

ReadFileReadFile

SetConsoleModeSetConsoleMode

WriteConsoleWriteConsole

WriteFileWriteFile

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

GetConsoleOriginalTitle function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

DWORD WINAPI GetConsoleOriginalTitle(
 Out LPTSTR lpConsoleTitle,
 In DWORD nSize
);

Parameters

Return value

Remarks

TIPTIP

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves the original title for the current console window.

lpConsoleTitle [out]

A pointer to a buffer that receives a null-terminated string containing the original title.

nSize [in]

The size of the lpConsoleTitle buffer, in characters.

If the function succeeds, the return value is the length of the string copied to the buffer, in characters.

If the buffer is not large enough to store the title, the return value is zero and GetLastErrorGetLastError returns

ERROR_SUCCESSERROR_SUCCESS .

If the function fails, the return value is zero and GetLastErrorGetLastError returns the error code.

To set the title for a console window, use the SetConsoleTitleSetConsoleTitle function. To retrieve the current title string, use the

GetConsoleTitleGetConsoleTitle function.

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0600 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems. Applications remoting via cross-platform utilities and transports like SSH

may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsoleoriginaltitle.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

Requirements

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names GetConsoleOriginalTitleWGetConsoleOriginalTitleW (Unicode) and
GetConsoleOriginalTitleAGetConsoleOriginalTitleA (ANSI)

See also
Console Functions

GetConsoleTitleGetConsoleTitle

SetConsoleTitleSetConsoleTitle

GetConsoleOutputCP function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

UINT WINAPI GetConsoleOutputCP(void);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

Retrieves the output code page used by the console associated with the calling process. A console uses its output

code page to translate the character values written by the various output functions into the images displayed in

the console window.

This function has no parameters.

The return value is a code that identifies the code page. For a list of identifiers, see Code Page Identifiers.

If the return value is zero, the function has failed. To get extended error information, call GetLastErrorGetLastError .

A code page maps 256 character codes to individual characters. Different code pages include different special

characters, typically customized for a language or a group of languages. To retrieve more information about a

code page, including it's name, see the GetCPInfoExGetCPInfoEx function.

To set a console's output code page, use the SetConsoleOutputCPSetConsoleOutputCP function. To set and query a console's input

code page, use the SetConsoleCPSetConsoleCP and GetConsoleCPGetConsoleCP functions.

Console Code Pages

Console Functions

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsoleoutputcp.md
https://msdn.microsoft.com/library/windows/desktop/dd317756
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/dd318081

GetConsoleCPGetConsoleCP

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

GetConsoleProcessList function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

DWORD WINAPI GetConsoleProcessList(
 Out LPDWORD lpdwProcessList,
 In DWORD dwProcessCount
);

Parameters

Return value

Remarks

TIPTIP

Retrieves a list of the processes attached to the current console.

lpdwProcessList [out]

A pointer to a buffer that receives an array of process identifiers upon success. This must be a valid buffer and

cannot be NULL . The buffer must have space to receive at least 1 returned process id.

dwProcessCount [in]

The maximum number of process identifiers that can be stored in the lpdwProcessList buffer. This must be greater

than 0.

If the function succeeds, the return value is less than or equal to dwProcessCount and represents the number of

process identifiers stored in the lpdwProcessList buffer.

If the buffer is too small to hold all the valid process identifiers, the return value is the required number of array

elements. The function will have stored no identifiers in the buffer. In this situation, use the return value to allocate

a buffer that is large enough to store the entire list and call the function again.

If the return value is zero, the function has failed, because every console has at least one process associated with it.

To get extended error information, call GetLastErrorGetLastError .

If a NULL process list was provided or the process count was 0, the call will return 0 and GetLastError will return

ERROR_INVALID_PARAMETER . Please provide a buffer of at least one element to call this function. Allocate a larger

buffer and call again if the return code is larger than the length of the provided buffer.

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0501 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems. This state is only relevant to the local user, session, and privilege context.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsoleprocesslist.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

Requirements

Minimum supported client Windows XP [desktop apps only]

Minimum supported server Windows Server 2003 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
AttachConsoleAttachConsole

Console Functions

GetConsoleScreenBufferInfo function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI GetConsoleScreenBufferInfo(
 In HANDLE hConsoleOutput,
 Out PCONSOLE_SCREEN_BUFFER_INFO lpConsoleScreenBufferInfo
);

Parameters

Return value

Remarks

TIPTIP

Examples

Requirements

Retrieves information about the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpConsoleScreenBufferInfo [out]

A pointer to a CONSOLE_SCREEN_BUFFER_INFOCONSOLE_SCREEN_BUFFER_INFO structure that receives the console screen buffer

information.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

The rectangle returned in the srWindowsrWindow member of the CONSOLE_SCREEN_BUFFER_INFOCONSOLE_SCREEN_BUFFER_INFO structure can

be modified and then passed to the SetConsoleWindowInfoSetConsoleWindowInfo function to scroll the console screen buffer in

the window, to change the size of the window, or both.

All coordinates returned in the CONSOLE_SCREEN_BUFFER_INFOCONSOLE_SCREEN_BUFFER_INFO structure are in character-cell

coordinates, where the origin (0, 0) is at the upper-left corner of the console screen buffer.

This API does not have a vir tual terminalvir tual terminal equivalent. Its use may still be required for applications that are

attempting to draw columns, grids, or fill the display to retrieve the window size. This window state is managed by the

TTY/PTY/Pseudoconsole outside of the normal stream flow and is generally considered a user privilege not adjustable

by the client application. Updates can be received on ReadConsoleInputReadConsoleInput .

For an example, see Scrolling a Screen Buffer's Window.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolescreenbufferinfo.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

CONSOLE_SCREEN_BUFFER_INFOCONSOLE_SCREEN_BUFFER_INFO

GetLargestConsoleWindowSizeGetLargestConsoleWindowSize

SetConsoleCursorPositionSetConsoleCursorPosition

SetConsoleScreenBufferS izeSetConsoleScreenBufferS ize

SetConsoleWindowInfoSetConsoleWindowInfo

Window and Screen Buffer Size

GetConsoleScreenBufferInfoEx function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI GetConsoleScreenBufferInfoEx(
 In HANDLE hConsoleOutput,
 Out PCONSOLE_SCREEN_BUFFER_INFOEX lpConsoleScreenBufferInfoEx
);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows Vista [desktop apps only]

Retrieves extended information about the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpConsoleScreenBufferInfoEx [out]

A CONSOLE_SCREEN_BUFFER_INFOEXCONSOLE_SCREEN_BUFFER_INFOEX structure that receives the requested console screen buffer

information.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

The rectangle returned in the srWindowsrWindow member of the CONSOLE_SCREEN_BUFFER_INFOEXCONSOLE_SCREEN_BUFFER_INFOEX structure can

be modified and then passed to the SetConsoleWindowInfoSetConsoleWindowInfo function to scroll the console screen buffer in the

window, to change the size of the window, or both.

All coordinates returned in the CONSOLE_SCREEN_BUFFER_INFOEXCONSOLE_SCREEN_BUFFER_INFOEX structure are in character-cell coordinates,

where the origin (0, 0) is at the upper-left corner of the console screen buffer.

This API does not have a vir tual terminalvir tual terminal equivalent. Its use may still be required for applications that are attempting to

draw columns, grids, or fill the display to retrieve the window size. This window state is managed by the

TTY/PTY/Pseudoconsole outside of the normal stream flow and is generally considered a user privilege not adjustable by the

client application. Updates can be received on ReadConsoleInputReadConsoleInput .

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolescreenbufferinfoex.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

CONSOLE_SCREEN_BUFFER_INFOEXCONSOLE_SCREEN_BUFFER_INFOEX

SetConsoleScreenBufferInfoExSetConsoleScreenBufferInfoEx

GetConsoleSelectionInfo function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI GetConsoleSelectionInfo(
 Out PCONSOLE_SELECTION_INFO lpConsoleSelectionInfo
);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows XP [desktop apps only]

Minimum supported server Windows Server 2003 [desktop apps only]

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves information about the current console selection.

lpConsoleSelectionInfo [out]

A pointer to a CONSOLE_SELECTION_INFOCONSOLE_SELECTION_INFO structure that receives the selection information.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0500 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsoleselectioninfo.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Selection

CONSOLE_SELECTION_INFOCONSOLE_SELECTION_INFO

GetConsoleTitle function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

DWORD WINAPI GetConsoleTitle(
 Out LPTSTR lpConsoleTitle,
 In DWORD nSize
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Retrieves the title for the current console window.

lpConsoleTitle [out]

A pointer to a buffer that receives a null-terminated string containing the title. If the buffer is too small to store the

title, the function stores as many characters of the title as will fit in the buffer, ending with a null terminator.

nSize [in]

The size of the buffer pointed to by the lpConsoleTitle parameter, in characters.

If the function succeeds, the return value is the length of the console window's title, in characters.

If the function fails, the return value is zero and GetLastErrorGetLastError returns the error code.

To set the title for a console window, use the SetConsoleTitleSetConsoleTitle function. To retrieve the original title string, use the

GetConsoleOriginalTitleGetConsoleOriginalTitle function.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode con cpmode con cp

select=select= commands, but it is not recommended for new development.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsoletitle.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names GetConsoleTitleWGetConsoleTitleW (Unicode) and GetConsoleTitleAGetConsoleTitleA
(ANSI)

See also

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems. Applications remoting via cross-platform utilities and transports like SSH

may not work as expected if using this API.

For an example, see SetConsoleTitleSetConsoleTitle.

Console Functions

GetConsoleOriginalTitleGetConsoleOriginalTitle

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

SetConsoleTitleSetConsoleTitle

GetConsoleWindow function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

HWND WINAPI GetConsoleWindow(void);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves the window handle used by the console associated with the calling process.

This function has no parameters.

The return value is a handle to the window used by the console associated with the calling process or NULLNULL if

there is no such associated console.

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0500 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems. This state is only relevant to the local user, session, and privilege context.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

For an application that is hosted inside a pseudoconsolepseudoconsole session, this function returns a window handle for

message queue purposes only. The associated window is not displayed locally as the pseudoconsole is serializing

all actions to a stream for presentation on another terminal window elsewhere.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getconsolewindow.md
https://msdn.microsoft.com/library/windows/desktop/aa383745

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

GetCurrentConsoleFont function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI GetCurrentConsoleFont(
 In HANDLE hConsoleOutput,
 In BOOL bMaximumWindow,
 Out PCONSOLE_FONT_INFO lpConsoleCurrentFont
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Retrieves information about the current console font.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

bMaximumWindow [in]

If this parameter is TRUETRUE, font information is retrieved for the maximum window size. If this parameter is FALSEFALSE,

font information is retrieved for the current window size.

lpConsoleCurrentFont [out]

A pointer to a CONSOLE_FONT_INFOCONSOLE_FONT_INFO structure that receives the requested font information.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0500 or later. For more

information, see Using the Windows Headers.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getcurrentconsolefont.md
https://docs.microsoft.com/en-us/windows/console/console-font-info-str
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

TIPTIP

Requirements

Minimum supported client Windows XP [desktop apps only]

Minimum supported server Windows Server 2003 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

Console Functions

Console Screen Buffers

CONSOLE_FONT_INFOCONSOLE_FONT_INFO

GetConsoleFontSizeGetConsoleFontSize

https://docs.microsoft.com/en-us/windows/console/console-font-info-str

GetCurrentConsoleFontEx function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI GetCurrentConsoleFontEx(
 In HANDLE hConsoleOutput,
 In BOOL bMaximumWindow,
 Out PCONSOLE_FONT_INFOEX lpConsoleCurrentFontEx
);

Parameters

Return value

TIPTIP

Requirements

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves extended information about the current console font.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

bMaximumWindow [in]

If this parameter is TRUETRUE, font information is retrieved for the maximum window size. If this parameter is FALSEFALSE,

font information is retrieved for the current window size.

lpConsoleCurrentFontEx [out]

A pointer to a CONSOLE_FONT_INFOEXCONSOLE_FONT_INFOEX structure that receives the requested font information.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getcurrentconsolefontex.md
https://docs.microsoft.com/en-us/windows/console/console-font-infoex
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

CONSOLE_FONT_INFOEXCONSOLE_FONT_INFOEX

https://docs.microsoft.com/en-us/windows/console/console-font-infoex

GetLargestConsoleWindowSize function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

COORD WINAPI GetLargestConsoleWindowSize(
 In HANDLE hConsoleOutput
);

Parameters

Return value

Remarks

TIPTIP

Requirements

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Retrieves the size of the largest possible console window, based on the current font and the size of the display.

hConsoleOutput [in]

A handle to the console screen buffer.

If the function succeeds, the return value is a COORDCOORD structure that specifies the number of character cell

columns (XX member) and rows (YY member) in the largest possible console window. Otherwise, the members of

the structure are zero.

To get extended error information, call GetLastErrorGetLastError .

The function does not take into consideration the size of the console screen buffer, which means that the window

size returned may be larger than the size of the console screen buffer. The GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

function can be used to determine the maximum size of the console window, given the current screen buffer size,

the current font, and the display size.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getlargestconsolewindowsize.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

COORDCOORD

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

SetConsoleWindowInfoSetConsoleWindowInfo

Window and Screen Buffer Size

GetNumberOfConsoleInputEvents function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI GetNumberOfConsoleInputEvents(
 In HANDLE hConsoleInput,
 Out LPDWORD lpcNumberOfEvents
);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Retrieves the number of unread input records in the console's input buffer.

hConsoleInput [in]

A handle to the console input buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpcNumberOfEvents [out]

A pointer to a variable that receives the number of unread input records in the console's input buffer.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

The GetNumberOfConsoleInputEventsGetNumberOfConsoleInputEvents function reports the total number of unread input records in the input

buffer, including keyboard, mouse, and window-resizing input records. Processes using the ReadFileReadFile or

ReadConsoleReadConsole function can only read keyboard input. Processes using the ReadConsoleInputReadConsoleInput function can read

all types of input records.

A process can specify a console input buffer handle in one of the wait functions to determine when there is unread

console input. When the input buffer is not empty, the state of a console input buffer handle is signaled.

To read input records from a console input buffer without affecting the number of unread records, use the

PeekConsoleInputPeekConsoleInput function. To discard all unread records in a console's input buffer, use the

FlushConsoleInputBufferFlushConsoleInputBuffer function.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getnumberofconsoleinputevents.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/ms687069

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

FlushConsoleInputBufferFlushConsoleInputBuffer

Low-Level Console Input Functions

PeekConsoleInputPeekConsoleInput

ReadConsoleReadConsole

ReadConsoleInputReadConsoleInput

ReadFileReadFile

https://msdn.microsoft.com/library/windows/desktop/aa365467

GetNumberOfConsoleMouseButtons function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI GetNumberOfConsoleMouseButtons(
 Out LPDWORD lpNumberOfMouseButtons
);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Retrieves the number of buttons on the mouse used by the current console.

lpNumberOfMouseButtons [out]

A pointer to a variable that receives the number of mouse buttons.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

When a console receives mouse input, an INPUT_RECORDINPUT_RECORD structure containing a MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD

structure is placed in the console's input buffer. The dwButtonStatedwButtonState member of MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD has a

bit indicating the state of each mouse button. The bit is 1 if the button is down and 0 if the button is up. To

determine the number of bits that are significant, use GetNumberOfConsoleMouseButtonsGetNumberOfConsoleMouseButtons .

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems. This state is only relevant to the local user, session, and privilege context.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/getnumberofconsolemousebuttons.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Input Buffer

ReadConsoleInputReadConsoleInput

INPUT_RECORDINPUT_RECORD

MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD

GetStdHandle function
12/1/2020 • 3 minutes to read • Edit Online

Syntax

HANDLE WINAPI GetStdHandle(
 In DWORD nStdHandle
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

STD_INPUT_HANDLESTD_INPUT_HANDLE (DWORD) -10 The standard input device. Initially, this is the console input
buffer, CONIN$.

STD_OUTPUT_HANDLESTD_OUTPUT_HANDLE (DWORD) -11 The standard output device. Initially, this is the active
console screen buffer, CONOUT$.

STD_ERROR_HANDLESTD_ERROR_HANDLE (DWORD) -12 The standard error device. Initially, this is the active console
screen buffer, CONOUT$.

Return value

Remarks

Retrieves a handle to the specified standard device (standard input, standard output, or standard error).

nStdHandle [in]

The standard device. This parameter can be one of the following values.

If the function succeeds, the return value is a handle to the specified device, or a redirected handle set by a

previous call to SetStdHandleSetStdHandle. The handle has GENERIC_READGENERIC_READ and GENERIC_WRITEGENERIC_WRITE access rights, unless

the application has used SetStdHandleSetStdHandle to set a standard handle with lesser access.

If the function fails, the return value is INVALID_HANDLE_VALUEINVALID_HANDLE_VALUE. To get extended error information, call

GetLastErrorGetLastError .

If an application does not have associated standard handles, such as a service running on an interactive desktop,

and has not redirected them, the return value is NULLNULL .

Handles returned by GetStdHandleGetStdHandle can be used by applications that need to read from or write to the console.

When a console is created, the standard input handle is a handle to the console's input buffer, and the standard

output and standard error handles are handles of the console's active screen buffer. These handles can be used

by the ReadFileReadFile and WriteFileWriteFile functions, or by any of the console functions that access the console input

buffer or a screen buffer (for example, the ReadConsoleInputReadConsoleInput, WriteConsoleWriteConsole, or

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo functions).

The standard handles of a process may be redirected by a call to SetStdHandleSetStdHandle, in which case GetStdHandleGetStdHandle

returns the redirected handle. If the standard handles have been redirected, you can specify the CONIN$ value in

https://github.com/Microsoft/Console-Docs/blob/master/docs/getstdhandle.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

Attach/detach behaviorAttach/detach behavior

NOTENOTE

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ProcessEnv.h (via Winbase.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

a call to the CreateFileCreateFile function to get a handle to a console's input buffer. Similarly, you can specify the

CONOUT$ value to get a handle to a console's active screen buffer.

The standard handles of a process on entry of the main method are dictated by the configuration of the

/SUBSYSTEM/SUBSYSTEM flag passed to the linker when the application was built. Specifying /SUBSYSTEM:CONSOLE/SUBSYSTEM:CONSOLE

requests that the operating system fill the handles with a console session on startup, if the parent didn't already

fill the standard handle table by inheritance. On the contrary, /SUBSYSTEM:WINDOWS/SUBSYSTEM:WINDOWS implies that the

application does not need a console and will likely not be making use of the standard handles. More

information on handle inheritance can be found in the documentation for STARTF_USESTDHANDLESSTARTF_USESTDHANDLES .

Some applications operate outside the boundaries of their declared subsystem; for instance, a

/SUBSYSTEM:WINDOWS/SUBSYSTEM:WINDOWS application might check/use standard handles for logging or debugging purposes

but operate normally with a graphical user interface. These applications will need to carefully probe the state of

standard handles on startup and make use of AttachConsoleAttachConsole, AllocConsoleAllocConsole, and FreeConsoleFreeConsole to

add/remove a console if desired.

Some applications may also vary their behavior on the type of inherited handle. Disambiguating the type

between console, pipe, file, and others can be performed with GetFileTypeGetFileType.

When attaching to a new console, standard handles are always replaced with console handles unless

STARTF_USESTDHANDLESSTARTF_USESTDHANDLES was specified during process creation.

If the existing value of the standard handle is NULLNULL , or the existing value of the standard handle looks like a

console pseudohandle, the handle is replaced with a console handle.

When a parent uses both CREATE_NEW_CONSOLECREATE_NEW_CONSOLE and STARTF_USESTDHANDLESSTARTF_USESTDHANDLES to create a console

process, standard handles will not be replaced unless the existing value of the standard handle is NULLNULL or a

console pseudohandle.

Console processes must start with the standard handles filled or they will be filled automatically with appropriate handles

to a new console. Graphical user interface (GUI) applications can be started without the standard handles and they will

not be automatically filled.

For an example, see Reading Input Buffer Events.

https://msdn.microsoft.com/library/windows/desktop/aa363858
https://docs.microsoft.com/en-us/cpp/build/reference/subsystem-specify-subsystem
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-startupinfoa
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfiletype

See also
Console Functions

Console Handles

CreateFileCreateFile

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

ReadConsoleInputReadConsoleInput

ReadFileReadFile

SetStdHandleSetStdHandle

WriteConsoleWriteConsole

WriteFileWriteFile

https://msdn.microsoft.com/library/windows/desktop/aa363858
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

HandlerRoutine callback function
10/29/2020 • 3 minutes to read • Edit Online

Syntax

BOOL WINAPI HandlerRoutine(
 In DWORD dwCtrlType
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

CTRL_C_EVENTCTRL_C_EVENT 0 A CTRL+C signal was received, either from keyboard input or
from a signal generated by the
GenerateConsoleCtrlEventGenerateConsoleCtrlEvent function.

CTRL_BREAK_EVENTCTRL_BREAK_EVENT 1 A CTRL+BREAK signal was received, either from keyboard
input or from a signal generated by
GenerateConsoleCtrlEventGenerateConsoleCtrlEvent .

CTRL_CLOSE_EVENTCTRL_CLOSE_EVENT 2 A signal that the system sends to all processes attached to a
console when the user closes the console (either by clicking
CloseClose on the console window's window menu, or by clicking
the End TaskEnd Task button command from Task Manager).

CTRL_LOGOFF_EVENTCTRL_LOGOFF_EVENT 5 A signal that the system sends to all console processes when
a user is logging off. This signal does not indicate which user
is logging off, so no assumptions can be made.

Note that this signal is received only by services. Interactive
applications are terminated at logoff, so they are not present
when the system sends this signal.

An application-defined function used with the SetConsoleCtr lHandlerSetConsoleCtr lHandler function. A console process uses this

function to handle control signals received by the process. When the signal is received, the system creates a new

thread in the process to execute the function.

The PHANDLER_ROUTINEPHANDLER_ROUTINE type defines a pointer to this callback function. HandlerRoutineHandlerRoutine is a placeholder for

the application-defined function name.

dwCtrlType [in]

The type of control signal received by the handler. This parameter can be one of the following values.

https://github.com/Microsoft/Console-Docs/blob/master/docs/handlerroutine.md

CTRL_SHUTDOWN_EVENTCTRL_SHUTDOWN_EVENT 6 A signal that the system sends when the system is shutting
down. Interactive applications are not present by the time
the system sends this signal, therefore it can be received only
be services in this situation. Services also have their own
notification mechanism for shutdown events. For more
information, see HandlerHandler .

This signal can also be generated by an application using
GenerateConsoleCtrlEventGenerateConsoleCtrlEvent .

VA L UEVA L UE M EA N IN GM EA N IN G

Return value

Remarks

Timeouts

If the function handles the control signal, it should return TRUETRUE. If it returns FALSEFALSE, the next handler function in

the list of handlers for this process is used.

Because the system creates a new thread in the process to execute the handler function, it is possible that the

handler function will be terminated by another thread in the process. Be sure to synchronize threads in the

process with the thread for the handler function.

Each console process has its own list of HandlerRoutineHandlerRoutine functions. Initially, this list contains only a default

handler function that calls ExitProcessExitProcess . A console process adds or removes additional handler functions by

calling the SetConsoleCtr lHandlerSetConsoleCtr lHandler function, which does not affect the list of handler functions for other

processes. When a console process receives any of the control signals, its handler functions are called on a last-

registered, first-called basis until one of the handlers returns TRUETRUE. If none of the handlers returns TRUETRUE, the

default handler is called.

The CTRL_CLOSE_EVENTCTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENTCTRL_LOGOFF_EVENT, and CTRL_SHUTDOWN_EVENTCTRL_SHUTDOWN_EVENT signals give the process

an opportunity to clean up before termination. A HandlerRoutineHandlerRoutine can perform any necessary cleanup, then take

one of the following actions:

Call the ExitProcessExitProcess function to terminate the process.

Return FALSEFALSE. If none of the registered handler functions returns TRUETRUE, the default handler terminates the

process.

Return TRUETRUE. In this case, no other handler functions are called and the system terminates the process.

A process can use the SetProcessShutdownParametersSetProcessShutdownParameters function to prevent the system from displaying a

dialog box to the user during logoff or shutdown. In this case, the system terminates the process when

HandlerRoutineHandlerRoutine returns TRUETRUE or when the time-out period elapses.

When a console application is run as a service, it receives a modified default console control handler. This

modified handler does not call ExitProcessExitProcess when processing the CTRL_LOGOFF_EVENTCTRL_LOGOFF_EVENT and

CTRL_SHUTDOWN_EVENTCTRL_SHUTDOWN_EVENT signals. This allows the service to continue running after the user logs off. If the

service installs its own console control handler, this handler is called before the default handler. If the installed

handler calls ExitProcessExitProcess when processing the CTRL_LOGOFF_EVENTCTRL_LOGOFF_EVENT signal, the service exits when the user

logs off.

Note that a third-party library or DLL can install a console control handler for your application. If it does, this

handler overrides the default handler, and can cause the application to exit when the user logs off.

https://msdn.microsoft.com/library/windows/desktop/ms683240
https://msdn.microsoft.com/library/windows/desktop/ms682658
https://msdn.microsoft.com/library/windows/desktop/ms682658
https://msdn.microsoft.com/library/windows/desktop/ms686227
https://msdn.microsoft.com/library/windows/desktop/ms682658

EVEN TEVEN T C IRC UM STA N C ESC IRC UM STA N C ES T IM EO UTT IM EO UT

CTRL_CLOSE_EVENT any system parameter
SPI_GETHUNGAPPTIMEOUT , 5000ms

CTRL_LOGOFF_EVENT quick[1] registry key
CriticalAppShutdownTimeout or

500ms

CTRL_LOGOFF_EVENT none of the above system parameter
SPI_GETWAITTOKILLTIMEOUT , 5000ms

CTRL_SHUTDOWN_EVENT ser vice processser vice process system parameter
SPI_GETWAITTOKILLSERVICETIMEOUT ,

20000ms

CTRL_SHUTDOWN_EVENT quick[1] registry key
CriticalAppShutdownTimeout or

500ms

CTRL_SHUTDOWN_EVENT none of the above system parameter
SPI_GETWAITTOKILLTIMEOUT , 5000ms

CTRL_C , CTRL_BREAK any no timeoutno timeout

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

See also

[1]: "quick" events are never used, but there's still code to support them.

Console Control Handlers

Console Functions

ExitProcessExitProcess

GenerateConsoleCtr lEventGenerateConsoleCtr lEvent

GetProcessShutdownParametersGetProcessShutdownParameters

SetConsoleCtr lHandlerSetConsoleCtr lHandler

SetProcessShutdownParametersSetProcessShutdownParameters

https://msdn.microsoft.com/library/windows/desktop/ms682658
https://msdn.microsoft.com/library/windows/desktop/ms683221
https://msdn.microsoft.com/library/windows/desktop/ms686227

PeekConsoleInput function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI PeekConsoleInput(
 In HANDLE hConsoleInput,
 Out PINPUT_RECORD lpBuffer,
 In DWORD nLength,
 Out LPDWORD lpNumberOfEventsRead
);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Reads data from the specified console input buffer without removing it from the buffer.

hConsoleInput [in]

A handle to the console input buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpBuffer [out]

A pointer to an array of INPUT_RECORDINPUT_RECORD structures that receives the input buffer data.

nLength [in]

The size of the array pointed to by the lpBuffer parameter, in array elements.

lpNumberOfEventsRead [out]

A pointer to a variable that receives the number of input records read.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

If the number of records requested exceeds the number of records available in the buffer, the number available is

read. If no data is available, the function returns immediately.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode conmode con

cp select=cp select= commands, but it is not recommended for new development.

https://github.com/Microsoft/Console-Docs/blob/master/docs/peekconsoleinput.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names PeekConsoleInputWPeekConsoleInputW (Unicode) and PeekConsoleInputAPeekConsoleInputA
(ANSI)

See also
Console Functions

ReadConsoleInputReadConsoleInput

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

WriteConsoleInputWriteConsoleInput

INPUT_RECORDINPUT_RECORD

ReadConsole function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI ReadConsole(
 In HANDLE hConsoleInput,
 Out LPVOID lpBuffer,
 In DWORD nNumberOfCharsToRead,
 Out LPDWORD lpNumberOfCharsRead,
 _In_opt_ LPVOID pInputControl
);

Parameters

Return value

Remarks

Reads character input from the console input buffer and removes it from the buffer.

hConsoleInput [in]

A handle to the console input buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpBuffer [out]

A pointer to a buffer that receives the data read from the console input buffer.

nNumberOfCharsToRead [in]

The number of characters to be read. The size of the buffer pointed to by the lpBuffer parameter should

be at least nNumberOfCharsToRead * sizeof(TCHAR) bytes.

lpNumberOfCharsRead [out]

A pointer to a variable that receives the number of characters actually read.

pInputControl [in, optional]

A pointer to a CONSOLE_READCONSOLE_CONTROLCONSOLE_READCONSOLE_CONTROL structure that specifies a control character to

signal the end of the read operation. This parameter can be NULLNULL .

This parameter requires Unicode input by default. For ANSI mode, set this parameter to NULLNULL .

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

ReadConsoleReadConsole reads keyboard input from a console's input buffer. It behaves like the ReadFileReadFile function,

except that it can read in either Unicode (wide-character) or ANSI mode. To have applications that

maintain a single set of sources compatible with both modes, use ReadConsoleReadConsole rather than ReadFileReadFile.

Although ReadConsoleReadConsole can only be used with a console input buffer handle, ReadFileReadFile can be used with

other handles (such as files or pipes). ReadConsoleReadConsole fails if used with a standard handle that has been

redirected to be something other than a console handle.

https://github.com/Microsoft/Console-Docs/blob/master/docs/readconsole.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa365467

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names ReadConsoleWReadConsoleW (Unicode) and ReadConsoleAReadConsoleA (ANSI)

See also

All of the input modes that affect the behavior of ReadFileReadFile have the same effect on ReadConsoleReadConsole. To

retrieve and set the input modes of a console input buffer, use the GetConsoleModeGetConsoleMode and

SetConsoleModeSetConsoleMode functions.

If the input buffer contains input events other than keyboard events (such as mouse events or window-

resizing events), they are discarded. Those events can only be read by using the ReadConsoleInputReadConsoleInput

function.

This function uses either Unicode characters or 8-bit characters from the console's current code page.

The console's code page defaults initially to the system's OEM code page. To change the console's code

page, use the SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the

chcpchcp or mode con cp select=mode con cp select= commands, but it is not recommended for new development.

The pInputControl parameter can be used to enable intermediate wakeups from the read in response to

a file-completion control character specified in a CONSOLE_READCONSOLE_CONTROLCONSOLE_READCONSOLE_CONTROL structure.

This feature requires command extensions to be enabled, the standard output handle to be a console

output handle, and input to be Unicode.

Windows Ser ver 2003 and Windows XP/2000:Windows Ser ver 2003 and Windows XP/2000: The intermediate read feature is not supported.

Console Functions

CONSOLE_READCONSOLE_CONTROLCONSOLE_READCONSOLE_CONTROL

GetConsoleModeGetConsoleMode

Input and Output Methods

ReadConsoleInputReadConsoleInput

ReadFileReadFile

SetConsoleCPSetConsoleCP

SetConsoleModeSetConsoleMode

SetConsoleOutputCPSetConsoleOutputCP

WriteConsoleWriteConsole

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467

ReadConsoleInput function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI ReadConsoleInput(
 In HANDLE hConsoleInput,
 Out PINPUT_RECORD lpBuffer,
 In DWORD nLength,
 Out LPDWORD lpNumberOfEventsRead
);

Parameters

Return value

Remarks

Reads data from a console input buffer and removes it from the buffer.

hConsoleInput [in]

A handle to the console input buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpBuffer [out]

A pointer to an array of INPUT_RECORDINPUT_RECORD structures that receives the input buffer data.

nLength [in]

The size of the array pointed to by the lpBuffer parameter, in array elements.

lpNumberOfEventsRead [out]

A pointer to a variable that receives the number of input records read.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

If the number of records requested in the nLength parameter exceeds the number of records available in

the buffer, the number available is read. The function does not return until at least one input record has

been read.

A process can specify a console input buffer handle in one of the wait functions to determine when there is

unread console input. When the input buffer is not empty, the state of a console input buffer handle is

signaled.

To determine the number of unread input records in a console's input buffer, use the

GetNumberOfConsoleInputEventsGetNumberOfConsoleInputEvents function. To read input records from a console input buffer without

affecting the number of unread records, use the PeekConsoleInputPeekConsoleInput function. To discard all unread records

in a console's input buffer, use the FlushConsoleInputBufferFlushConsoleInputBuffer function.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use

https://github.com/Microsoft/Console-Docs/blob/master/docs/readconsoleinput.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms687069

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names ReadConsoleInputWReadConsoleInputW (Unicode) and
ReadConsoleInputAReadConsoleInputA (ANSI)

See also

the SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or

mode con cp select=mode con cp select= commands, but it is not recommended for new development.

For an example, see Reading Input Buffer Events.

Console Functions

FlushConsoleInputBufferFlushConsoleInputBuffer

GetNumberOfConsoleInputEventsGetNumberOfConsoleInputEvents

INPUT_RECORDINPUT_RECORD

Low-Level Console Input Functions

PeekConsoleInputPeekConsoleInput

ReadConsoleReadConsole

ReadFileReadFile

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

WriteConsoleInputWriteConsoleInput

https://msdn.microsoft.com/library/windows/desktop/aa365467

ReadConsoleOutput function
10/29/2020 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI ReadConsoleOutput(
 In HANDLE hConsoleOutput,
 Out PCHAR_INFO lpBuffer,
 In COORD dwBufferSize,
 In COORD dwBufferCoord,
 Inout PSMALL_RECT lpReadRegion
);

Parameters

Return value

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Reads character and color attribute data from a rectangular block of character cells in a console screen buffer, and

the function writes the data to a rectangular block at a specified location in the destination buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpBuffer [out]

A pointer to a destination buffer that receives the data read from the console screen buffer. This pointer is treated

as the origin of a two-dimensional array of CHAR_INFOCHAR_INFO structures whose size is specified by the dwBufferSize

parameter.

dwBufferSize [in]

The size of the lpBuffer parameter, in character cells. The XX member of the COORDCOORD structure is the number of

columns; the YY member is the number of rows.

dwBufferCoord [in]

The coordinates of the upper-left cell in the lpBuffer parameter that receives the data read from the console

screen buffer. The XX member of the COORDCOORD structure is the column, and the YY member is the row.

lpReadRegion [in, out]

A pointer to a SMALL_RECTSMALL_RECT structure. On input, the structure members specify the upper-left and lower-right

coordinates of the console screen buffer rectangle from which the function is to read. On output, the structure

members specify the actual rectangle that was used.

If the function succeeds, the return value is nonzero.

https://github.com/Microsoft/Console-Docs/blob/master/docs/readconsoleoutput.md
https://docs.microsoft.com/en-us/windows/console/char-info-str

Remarks

TIPTIP

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

ReadConsoleOutputReadConsoleOutput treats the console screen buffer and the destination buffer as two-dimensional arrays

(columns and rows of character cells). The rectangle pointed to by the lpReadRegion parameter specifies the size

and location of the block to be read from the console screen buffer. A destination rectangle of the same size is

located with its upper-left cell at the coordinates of the dwBufferCoord parameter in the lpBuffer array. Data read

from the cells in the console screen buffer source rectangle is copied to the corresponding cells in the destination

buffer. If the corresponding cell is outside the boundaries of the destination buffer rectangle (whose dimensions

are specified by the dwBufferSize parameter), the data is not copied.

Cells in the destination buffer corresponding to coordinates that are not within the boundaries of the console

screen buffer are left unchanged. In other words, these are the cells for which no screen buffer data is available to

be read.

Before ReadConsoleOutputReadConsoleOutput returns, it sets the members of the structure pointed to by the lpReadRegion

parameter to the actual screen buffer rectangle whose cells were copied into the destination buffer. This rectangle

reflects the cells in the source rectangle for which there existed a corresponding cell in the destination buffer,

because ReadConsoleOutputReadConsoleOutput clips the dimensions of the source rectangle to fit the boundaries of the console

screen buffer.

If the rectangle specified by lpReadRegion lies completely outside the boundaries of the console screen buffer, or

if the corresponding rectangle is positioned completely outside the boundaries of the destination buffer, no data

is copied. In this case, the function returns with the members of the structure pointed to by the lpReadRegion

parameter set such that the RightRight member is less than the LeftLeft, or the BottomBottom member is less than the TopTop. To

determine the size of the console screen buffer, use the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo function.

The ReadConsoleOutputReadConsoleOutput function has no effect on the console screen buffer's cursor position. The contents of

the console screen buffer are not changed by the function.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode con cpmode con cp

select=select= commands, but it is not recommended for new development.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application is expected to remember its own

drawn state for further manipulation. Applications remoting via cross-platform utilities and transports like SSH may not

work as expected if using this API.

For an example, see Reading and Writing Blocks of Characters and Attributes.

https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names ReadConsoleOutputWReadConsoleOutputW (Unicode) and
ReadConsoleOutputAReadConsoleOutputA (ANSI)

See also
Console Functions

Low-Level Console Output Functions

ReadConsoleOutputAttr ibuteReadConsoleOutputAttr ibute

ReadConsoleOutputCharacterReadConsoleOutputCharacter

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

SMALL_RECTSMALL_RECT

WriteConsoleOutputWriteConsoleOutput

CHAR_INFOCHAR_INFO

COORDCOORD

https://docs.microsoft.com/en-us/windows/console/char-info-str

ReadConsoleOutputAttribute function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI ReadConsoleOutputAttribute(
 In HANDLE hConsoleOutput,
 Out LPWORD lpAttribute,
 In DWORD nLength,
 In COORD dwReadCoord,
 Out LPDWORD lpNumberOfAttrsRead
);

Parameters

Return value

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Copies a specified number of character attributes from consecutive cells of a console screen buffer, beginning at a

specified location.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpAttribute [out]

A pointer to a buffer that receives the attributes being used by the console screen buffer.

For more information, see Character Attributes.

nLength [in]

The number of screen buffer character cells from which to read. The size of the buffer pointed to by the

lpAttribute parameter should be nLength * sizeof(WORD) .

dwReadCoord [in]

The coordinates of the first cell in the console screen buffer from which to read, in characters. The XX member of

the COORDCOORD structure is the column, and the YY member is the row.

lpNumberOfAttrsRead [out]

A pointer to a variable that receives the number of attributes actually read.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

https://github.com/Microsoft/Console-Docs/blob/master/docs/readconsoleoutputattribute.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Remarks

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

If the number of attributes to be read from extends beyond the end of the specified screen buffer row, attributes

are read from the next row. If the number of attributes to be read from extends beyond the end of the console

screen buffer, attributes up to the end of the console screen buffer are read.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application is expected to remember its own

drawn state for further manipulation. Applications remoting via cross-platform utilities and transports like SSH may not

work as expected if using this API.

Console Functions

COORDCOORD

Low-Level Console Output Functions

ReadConsoleOutputReadConsoleOutput

ReadConsoleOutputCharacterReadConsoleOutputCharacter

WriteConsoleOutputWriteConsoleOutput

WriteConsoleOutputAttr ibuteWriteConsoleOutputAttr ibute

WriteConsoleOutputCharacterWriteConsoleOutputCharacter

ReadConsoleOutputCharacter function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI ReadConsoleOutputCharacter(
 In HANDLE hConsoleOutput,
 Out LPTSTR lpCharacter,
 In DWORD nLength,
 In COORD dwReadCoord,
 Out LPDWORD lpNumberOfCharsRead
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Copies a number of characters from consecutive cells of a console screen buffer, beginning at a specified location.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpCharacter [out]

A pointer to a buffer that receives the characters read from the console screen buffer.

nLength [in]

The number of screen buffer character cells from which to read. The size of the buffer pointed to by the

lpCharacter parameter should be nLength * sizeof(TCHAR) .

dwReadCoord [in]

The coordinates of the first cell in the console screen buffer from which to read, in characters. The XX member of

the COORDCOORD structure is the column, and the YY member is the row.

lpNumberOfCharsRead [out]

A pointer to a variable that receives the number of characters actually read.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

https://github.com/Microsoft/Console-Docs/blob/master/docs/readconsoleoutputcharacter.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names ReadConsoleOutputCharacterWReadConsoleOutputCharacterW (Unicode) and
ReadConsoleOutputCharacterAReadConsoleOutputCharacterA (ANSI)

See also

If the number of characters to be read from extends beyond the end of the specified screen buffer row, characters

are read from the next row. If the number of characters to be read from extends beyond the end of the console

screen buffer, characters up to the end of the console screen buffer are read.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode con cpmode con cp

select=select= commands, but it is not recommended for new development.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application is expected to remember its own

drawn state for further manipulation. Applications remoting via cross-platform utilities and transports like SSH may not

work as expected if using this API.

Console Functions

COORDCOORD

Low-Level Console Output Functions

ReadConsoleOutputReadConsoleOutput

ReadConsoleOutputAttr ibuteReadConsoleOutputAttr ibute

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

WriteConsoleOutputWriteConsoleOutput

WriteConsoleOutputAttr ibuteWriteConsoleOutputAttr ibute

WriteConsoleOutputCharacterWriteConsoleOutputCharacter

ResizePseudoConsole function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

HRESULT WINAPI ResizePseudoConsole(
 In HPCON hPC ,
 In COORD size
);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 10 October 2018 Update (version 1809) [desktop
apps only]

Minimum supported server Windows Server 2019 [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

Resizes the internal buffers for a pseudoconsole to the given size.

hPC [in]

A handle to an active pseudoconsole as opened by CreatePseudoConsole.

size [in]

The dimensions of the window/buffer in count of characters that will be used for the internal buffer of this

pseudoconsole.

Type: HRESULTHRESULT

If this method succeeds, it returns S_OKS_OK. Otherwise, it returns an HRESULTHRESULT error code.

This function can resize the internal buffers in the pseudoconsole session to match the window/buffer size being

used for display on the terminal end. This ensures that attached Command-Line Interface (CUI) applications using

the Console Functions to communicate will have the correct dimensions returned in their calls.

https://github.com/Microsoft/Console-Docs/blob/master/docs/resizepseudoconsole.md

Pseudoconsoles

CreatePseudoConsoleCreatePseudoConsole

ClosePseudoConsoleClosePseudoConsole

ScrollConsoleScreenBuffer function
10/29/2020 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI ScrollConsoleScreenBuffer(
 In HANDLE hConsoleOutput,
 In const SMALL_RECT *lpScrollRectangle,
 _In_opt_ const SMALL_RECT *lpClipRectangle,
 In COORD dwDestinationOrigin,
 In const CHAR_INFO *lpFill
);

Parameters

Return value

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Moves a block of data in a screen buffer. The effects of the move can be limited by specifying a clipping rectangle,

so the contents of the console screen buffer outside the clipping rectangle are unchanged.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpScrollRectangle [in]

A pointer to a SMALL_RECTSMALL_RECT structure whose members specify the upper-left and lower-right coordinates of the

console screen buffer rectangle to be moved.

lpClipRectangle [in, optional]

A pointer to a SMALL_RECTSMALL_RECT structure whose members specify the upper-left and lower-right coordinates of the

console screen buffer rectangle that is affected by the scrolling. This pointer can be NULLNULL .

dwDestinationOrigin [in]

A COORDCOORD structure that specifies the upper-left corner of the new location of the lpScrollRectangle contents, in

characters.

lpFill [in]

A pointer to a CHAR_INFOCHAR_INFO structure that specifies the character and color attributes to be used in filling the

cells within the intersection of lpScrollRectangle and lpClipRectangle that were left empty as a result of the move.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

https://github.com/Microsoft/Console-Docs/blob/master/docs/scrollconsolescreenbuffer.md
https://docs.microsoft.com/en-us/windows/console/char-info-str
https://msdn.microsoft.com/library/windows/desktop/ms679360

Remarks

TIPTIP

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names ScrollConsoleScreenBufferWScrollConsoleScreenBufferW (Unicode) and
ScrollConsoleScreenBufferAScrollConsoleScreenBufferA (ANSI)

ScrollConsoleScreenBufferScrollConsoleScreenBuffer copies the contents of a rectangular region of a screen buffer, specified by the

lpScrollRectangle parameter, to another area of the console screen buffer. The target rectangle has the same

dimensions as the lpScrollRectangle rectangle with its upper-left corner at the coordinates specified by the

dwDestinationOrigin parameter. Those parts of lpScrollRectangle that do not overlap with the target rectangle

are filled in with the character and color attributes specified by the lpFill parameter.

The clipping rectangle applies to changes made in both the lpScrollRectangle rectangle and the target rectangle.

For example, if the clipping rectangle does not include a region that would have been filled by the contents of

lpFill, the original contents of the region are left unchanged.

If the scroll or target regions extend beyond the dimensions of the console screen buffer, they are clipped. For

example, if lpScrollRectangle is the region contained by (0,0) and (19,19) and dwDestinationOrigin is (10,15), the

target rectangle is the region contained by (10,15) and (29,34). However, if the console screen buffer is 50

characters wide and 30 characters high, the target rectangle is clipped to (10,15) and (29,29). Changes to the

console screen buffer are also clipped according to lpClipRectangle, if the parameter specifies a SMALL_RECTSMALL_RECT

structure. If the clipping rectangle is specified as (0,0) and (49,19), only the changes that occur in that region of

the console screen buffer are made.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode conmode con

cp select=cp select= commands, but it is not recommended for new development.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. Use can be approximated with scrollscroll

marginsmargins to fix an area of the screen, cursor positioningcursor positioning to set the active position outside the region, and newlines to

force text to move. The remaining space can be filled by moving the cursor, setting graphical attributessetting graphical attributes , and writing

normal text.

For an example, see Scrolling a Screen Buffer's Contents.

See also
CHAR_INFOCHAR_INFO

Console Functions

COORDCOORD

Scrolling the Screen Buffer

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

SetConsoleWindowInfoSetConsoleWindowInfo

SMALL_RECTSMALL_RECT

https://docs.microsoft.com/en-us/windows/console/char-info-str

SetConsoleActiveScreenBuffer function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleActiveScreenBuffer(
 In HANDLE hConsoleOutput
);

Parameters

Return value

Remarks

TIPTIP

Examples

Requirements

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Sets the specified screen buffer to be the currently displayed console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

A console can have multiple screen buffers. SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer determines which one is displayed.

You can write to an inactive screen buffer and then use SetConsoleActiveScreenBufferSetConsoleActiveScreenBuffer to display the buffer's

contents.

This API is not recommended but it does have an approximate vir tual terminalvir tual terminal equivalent in the alternate screenalternate screen

bufferbuffer sequence. Setting the alternate screen buffer can provide an application with a separate, isolated space for drawing

over the course of its session runtime while preserving the content that was displayed by the application's invoker. This

maintains that drawing information for simple restoration on process exit.

For an example, see Reading and Writing Blocks of Characters and Attributes.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsoleactivescreenbuffer.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Screen Buffers

CreateConsoleScreenBufferCreateConsoleScreenBuffer

SetConsoleCP function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI SetConsoleCP(
 In UINT wCodePageID
);

Parameters

Return value

Remarks

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Sets the input code page used by the console associated with the calling process. A console uses its input

code page to translate keyboard input into the corresponding character value.

wCodePageID [in]

The identifier of the code page to be set. For more information, see Remarks.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

A code page maps 256 character codes to individual characters. Different code pages include different

special characters, typically customized for a language or a group of languages.

To find the code pages that are installed or supported by the operating system, use the

EnumSystemCodePagesEnumSystemCodePages function. The identifiers of the code pages available on the local computer are

also stored in the registry under the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage

However, it is better to use EnumSystemCodePagesEnumSystemCodePages to enumerate code pages because the registry can

differ in different versions of Windows.

To determine whether a particular code page is valid, use the IsValidCodePageIsValidCodePage function. To retrieve more

information about a code page, including its name, use the GetCPInfoExGetCPInfoEx function. For a list of available

code page identifiers, see Code Page Identifiers.

To determine a console's current input code page, use the GetConsoleCPGetConsoleCP function. To set and retrieve a

console's output code page, use the SetConsoleOutputCPSetConsoleOutputCP and GetConsoleOutputCPGetConsoleOutputCP functions.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolecp.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/dd317825
https://msdn.microsoft.com/library/windows/desktop/dd317825
https://msdn.microsoft.com/library/windows/desktop/dd318674
https://msdn.microsoft.com/library/windows/desktop/dd318081
https://msdn.microsoft.com/library/windows/desktop/dd317756

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Code Pages

Console Functions

GetConsoleCPGetConsoleCP

GetConsoleOutputCPGetConsoleOutputCP

SetConsoleOutputCPSetConsoleOutputCP

SetConsoleCtrlHandler function
12/1/2020 • 4 minutes to read • Edit Online

Syntax

BOOL WINAPI SetConsoleCtrlHandler(
 _In_opt_ PHANDLER_ROUTINE HandlerRoutine,
 In BOOL Add
);

Parameters

Return value

Remarks

Adds or removes an application-defined HandlerRoutineHandlerRoutine function from the list of handler functions for the

calling process.

If no handler function is specified, the function sets an inheritable attribute that determines whether the calling

process ignores CTRL+C signals.

HandlerRoutine [in, optional]

A pointer to the application-defined HandlerRoutineHandlerRoutine function to be added or removed. This parameter can be

NULLNULL .

Add [in]

If this parameter is TRUETRUE, the handler is added; if it is FALSEFALSE, the handler is removed.

If the HandlerRoutine parameter is NULLNULL , a TRUETRUE value causes the calling process to ignore CTRL+C input, and

a FALSEFALSE value restores normal processing of CTRL+C input. This attribute of ignoring or processing CTRL+C is

inherited by child processes.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

This function provides a similar notification for console application and services that

WM_QUERYENDSESSIONWM_QUERYENDSESSION provides for graphical applications with a message pump. You could also use this

function from a graphical application, but there is no guarantee it would arrive before the notification from

WM_QUERYENDSESSIONWM_QUERYENDSESSION.

Each console process has its own list of application-defined HandlerRoutineHandlerRoutine functions that handle CTRL+C and

CTRL+BREAK signals. The handler functions also handle signals generated by the system when the user closes

the console, logs off, or shuts down the system. Initially, the handler list for each process contains only a default

handler function that calls the ExitProcessExitProcess function. A console process adds or removes additional handler

functions by calling the SetConsoleCtr lHandlerSetConsoleCtr lHandler function, which does not affect the list of handler functions for

other processes. When a console process receives any of the control signals, its handler functions are called on a

last-registered, first-called basis until one of the handlers returns TRUE . If none of the handlers returns TRUE ,

the default handler is called.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolectrlhandler.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa376890
https://msdn.microsoft.com/library/windows/desktop/ms682658

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

For console processes, the CTRL+C and CTRL+BREAK key combinations are typically treated as signals

(CTRL_C_EVENTCTRL_C_EVENT and CTRL_BREAK_EVENTCTRL_BREAK_EVENT). When a console window with the keyboard focus receives

CTRL+C or CTRL+BREAK, the signal is typically passed to all processes sharing that console.

CTRL+BREAK is always treated as a signal, but typical CTRL+C behavior can be changed in three ways that

prevent the handler functions from being called:

The SetConsoleModeSetConsoleMode function can disable the ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT mode for a console's input

buffer, so CTRL+C is reported as keyboard input rather than as a signal.

Calling SetConsoleCtr lHandlerSetConsoleCtr lHandler with the NULLNULL and TRUETRUE arguments causes the calling process to ignore

CTRL+C signals. This attribute is inherited by child processes, but it can be enabled or disabled by any

process without affecting existing processes.

If a console process is being debugged and CTRL+C signals have not been disabled, the system generates a

DBG_CONTROL_CDBG_CONTROL_C exception. This exception is raised only for the benefit of the debugger, and an

application should never use an exception handler to deal with it. If the debugger handles the exception, an

application will not notice the CTRL+C, with one exception: alertable waits will terminate. If the debugger

passes the exception on unhandled, CTRL+C is passed to the console process and treated as a signal, as

previously discussed.

A console process can use the GenerateConsoleCtr lEventGenerateConsoleCtr lEvent function to send a CTRL+C or CTRL+BREAK signal

to a console process group.

The system generates CTRL_CLOSE_EVENTCTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENTCTRL_LOGOFF_EVENT, and CTRL_SHUTDOWN_EVENTCTRL_SHUTDOWN_EVENT

signals when the user closes the console, logs off, or shuts down the system so that the process has an

opportunity to clean up before termination. Console functions, or any C run-time functions that call console

functions, may not work reliably during processing of any of the three signals mentioned previously. The reason

is that some or all of the internal console cleanup routines may have been called before executing the process

signal handler.

Windows 7, Windows 8, Windows 8.1 and Windows 10:Windows 7, Windows 8, Windows 8.1 and Windows 10:

If a console application loads the gdi32.dll or user32.dll library, the HandlerRoutineHandlerRoutine function that you specify

when you call SetConsoleCtr lHandlerSetConsoleCtr lHandler does not get called for the CTRL_LOGOFF_EVENTCTRL_LOGOFF_EVENT and

CTRL_SHUTDOWN_EVENTCTRL_SHUTDOWN_EVENT events. The operating system recognizes processes that load gdi32.dll or

user32.dll as Windows applications rather than console applications. This behavior also occurs for console

applications that do not call functions in gdi32.dll or user32.dll directly, but do call functions such as Shell

functions that do in turn call functions in gdi32.dll or user32.dll.

To receive events when a user signs out or the device shuts down in these circumstances, create a hidden

window in your console application, and then handle the WM_QUERYENDSESSIONWM_QUERYENDSESSION and WM_ENDSESSIONWM_ENDSESSION

window messages that the hidden window receives. You can create a hidden window by calling the

CreateWindowExCreateWindowEx method with the dwExStyle parameter set to 0.

For an example, see Registering a Control Handler Function.

https://msdn.microsoft.com/library/windows/desktop/bb776426
https://msdn.microsoft.com/library/windows/desktop/aa376890
https://msdn.microsoft.com/library/windows/desktop/aa376889
https://msdn.microsoft.com/library/windows/desktop/ms632680

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names

See also
Console Control Handlers

Console Functions

ExitProcessExitProcess

GenerateConsoleCtr lEventGenerateConsoleCtr lEvent

GetConsoleModeGetConsoleMode

HandlerRoutineHandlerRoutine

SetConsoleModeSetConsoleMode

https://msdn.microsoft.com/library/windows/desktop/ms682658

SetConsoleCursorInfo function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleCursorInfo(
 In HANDLE hConsoleOutput,
 In const CONSOLE_CURSOR_INFO *lpConsoleCursorInfo
);

Parameters

Return value

Remarks

TIPTIP

Requirements

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Sets the size and visibility of the cursor for the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

lpConsoleCursorInfo [in]

A pointer to a CONSOLE_CURSOR_INFOCONSOLE_CURSOR_INFO structure that provides the new specifications for the console screen

buffer's cursor.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

When a screen buffer's cursor is visible, its appearance can vary, ranging from completely filling a character cell to

showing up as a horizontal line at the bottom of the cell. The dwSizedwSize member of the CONSOLE_CURSOR_INFOCONSOLE_CURSOR_INFO

structure specifies the percentage of a character cell that is filled by the cursor. If this member is less than 1 or

greater than 100, SetConsoleCursorInfoSetConsoleCursorInfo fails.

This API has a vir tual terminalvir tual terminal equivalent in the cursor visibilitycursor visibility section with the ^[[?25h and ^[[?25l sequences.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolecursorinfo.md
https://docs.microsoft.com/en-us/windows/console/console-cursor-info-str
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/en-us/windows/console/console-cursor-info-str

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Screen Buffers

CONSOLE_CURSOR_INFOCONSOLE_CURSOR_INFO

GetConsoleCursorInfoGetConsoleCursorInfo

SetConsoleCursorPositionSetConsoleCursorPosition

https://docs.microsoft.com/en-us/windows/console/console-cursor-info-str

SetConsoleCursorPosition function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleCursorPosition(
 In HANDLE hConsoleOutput,
 In COORD dwCursorPosition
);

Parameters

Return value

Remarks

TIPTIP

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Sets the cursor position in the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

dwCursorPosition [in]

A COORDCOORD structure that specifies the new cursor position, in characters. The coordinates are the column and

row of a screen buffer character cell. The coordinates must be within the boundaries of the console screen buffer.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

The cursor position determines where characters written by the WriteFileWriteFile or WriteConsoleWriteConsole function, or echoed

by the ReadFileReadFile or ReadConsoleReadConsole function, are displayed. To determine the current position of the cursor, use

the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo function.

If the new cursor position is not within the boundaries of the console screen buffer's window, the window origin

changes to make the cursor visible.

This API has a vir tual terminalvir tual terminal equivalent in the simple cursor positioningsimple cursor positioning and cursor positioningcursor positioning sections. Use of

the newline, carriage return, backspace, and tab control sequences can also assist with cursor positioning.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolecursorposition.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

For an example, see Using the High-Level Input and Output Functions.

Console Functions

Console Screen Buffers

GetConsoleCursorInfoGetConsoleCursorInfo

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

ReadConsoleReadConsole

ReadFileReadFile

SetConsoleCursorInfoSetConsoleCursorInfo

WriteConsoleWriteConsole

WriteFileWriteFile

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

SetConsoleDisplayMode function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleDisplayMode(
 In HANDLE hConsoleOutput,
 In DWORD dwFlags,
 _Out_opt_ PCOORD lpNewScreenBufferDimensions
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

CONSOLE_FULLSCREEN_MODECONSOLE_FULLSCREEN_MODE 1 Text is displayed in full-screen mode.

CONSOLE_WINDOWED_MODECONSOLE_WINDOWED_MODE 2 Text is displayed in a console window.

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Sets the display mode of the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer.

dwFlags [in]

The display mode of the console. This parameter can be one or more of the following values.

lpNewScreenBufferDimensions [out, optional]

A pointer to a COORDCOORD structure that receives the new dimensions of the screen buffer, in characters.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsoledisplaymode.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Requirements

Minimum supported client Windows XP [desktop apps only]

Minimum supported server Windows Server 2003 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

Console Functions

Console Modes

GetConsoleDisplayModeGetConsoleDisplayMode

SetConsoleHistoryInfo function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleHistoryInfo(
 In PCONSOLE_HISTORY_INFO lpConsoleHistoryInfo
);

Parameters

Return value

Remarks

TIPTIP

Requirements

Minimum supported client Windows Vista [desktop apps only]

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Sets the history settings for the calling process's console.

lpConsoleHistoryInfo [in]

A pointer to a CONSOLE_HISTORY_INFOCONSOLE_HISTORY_INFO structure that contains the history settings for the process's console.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

If the calling process is not a console process, the function fails and sets the last error code to

ERROR_ACCESS_DENIEDERROR_ACCESS_DENIED.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the individual client application acting as a shell or interpreter is

expected to maintain its own user-convenience functionality like line reading and manipulation behavior including aliases and

command history. Applications remoting via cross-platform utilities and transports like SSH may not work as expected if

using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolehistoryinfo.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

CONSOLE_HISTORY_INFOCONSOLE_HISTORY_INFO

GetConsoleHistor yInfoGetConsoleHistor yInfo

SetConsoleMode function
12/1/2020 • 6 minutes to read • Edit Online

Syntax

BOOL WINAPI SetConsoleMode(
 In HANDLE hConsoleHandle,
 In DWORD dwMode
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

ENABLE_ECHO_INPUTENABLE_ECHO_INPUT 0x0004 Characters read by the ReadFileReadFile or ReadConsoleReadConsole function
are written to the active screen buffer as they are read. This
mode can be used only if the ENABLE_LINE_INPUTENABLE_LINE_INPUT mode
is also enabled.

ENABLE_INSERT_MODEENABLE_INSERT_MODE 0x0020 When enabled, text entered in a console window will be
inserted at the current cursor location and all text following
that location will not be overwritten. When disabled, all
following text will be overwritten.

ENABLE_LINE_INPUTENABLE_LINE_INPUT 0x0002 The ReadFileReadFile or ReadConsoleReadConsole function returns only when
a carriage return character is read. If this mode is disabled,
the functions return when one or more characters are
available.

ENABLE_MOUSE_INPUTENABLE_MOUSE_INPUT 0x0010 If the mouse pointer is within the borders of the console
window and the window has the keyboard focus, mouse
events generated by mouse movement and button presses
are placed in the input buffer. These events are discarded by
ReadFileReadFile or ReadConsoleReadConsole, even when this mode is
enabled.

Sets the input mode of a console's input buffer or the output mode of a console screen buffer.

hConsoleHandle [in]

A handle to the console input buffer or a console screen buffer. The handle must have the GENERIC_READGENERIC_READ

access right. For more information, see Console Buffer Security and Access Rights.

dwMode [in]

The input or output mode to be set.

If the hConsoleHandle parameter is an input handle, the mode can be one or more of the following values.

When a console is created, all input modes except ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT are enabled by default.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolemode.md
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467

ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT 0x0001 CTRL+C is processed by the system and is not placed in the
input buffer. If the input buffer is being read by ReadFileReadFile or
ReadConsoleReadConsole, other control keys are processed by the
system and are not returned in the ReadFileReadFile or
ReadConsoleReadConsole buffer. If the ENABLE_LINE_INPUTENABLE_LINE_INPUT mode is
also enabled, backspace, carriage return, and line feed
characters are handled by the system.

ENABLE_QUICK_EDIT_MODEENABLE_QUICK_EDIT_MODE 0x0040 This flag enables the user to use the mouse to select and
edit text.

To enable this mode, use
ENABLE_QUICK_EDIT_MODE | ENABLE_EXTENDED_FLAGS . To

disable this mode, use ENABLE_EXTENDED_FL AGSENABLE_EXTENDED_FL AGS
without this flag.

ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT 0x0008 User interactions that change the size of the console screen
buffer are reported in the console's input buffer. Information
about these events can be read from the input buffer by
applications using the ReadConsoleInputReadConsoleInput function, but
not by those using ReadFileReadFile or ReadConsoleReadConsole.

ENABLE_VIRTUAL_TERMINAL_INPUTENABLE_VIRTUAL_TERMINAL_INPUT 0x0200 Setting this flag directs the Virtual Terminal processing
engine to convert user input received by the console
window into Console Vir tual Terminal SequencesConsole Vir tual Terminal Sequences that
can be retrieved by a supporting application through
WriteFileWriteFile or WriteConsoleWriteConsole functions.

The typical usage of this flag is intended in conjunction with
ENABLE_VIRTUAL_TERMINAL_PROCESSING on the output
handle to connect to an application that communicates
exclusively via virtual terminal sequences.

VA L UEVA L UE M EA N IN GM EA N IN G

VA L UEVA L UE M EA N IN GM EA N IN G

ENABLE_PROCESSED_OUTPUTENABLE_PROCESSED_OUTPUT 0x0001 Characters written by the WriteFileWriteFile or WriteConsoleWriteConsole
function or echoed by the ReadFileReadFile or ReadConsoleReadConsole
function are parsed for ASCII control sequences, and the
correct action is performed. Backspace, tab, bell, carriage
return, and line feed characters are processed.

ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT 0x0002 When writing with WriteFileWriteFile or WriteConsoleWriteConsole or echoing
with ReadFileReadFile or ReadConsoleReadConsole, the cursor moves to the
beginning of the next row when it reaches the end of the
current row. This causes the rows displayed in the console
window to scroll up automatically when the cursor advances
beyond the last row in the window. It also causes the
contents of the console screen buffer to scroll up
(../discarding the top row of the console screen buffer) when
the cursor advances beyond the last row in the console
screen buffer. If this mode is disabled, the last character in
the row is overwritten with any subsequent characters.

If the hConsoleHandle parameter is a screen buffer handle, the mode can be one or more of the following

values. When a screen buffer is created, both output modes are enabled by default.

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467

ENABLE_VIRTUAL_TERMINAL_PROCESSINGENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004 When writing with WriteFileWriteFile or WriteConsoleWriteConsole, characters
are parsed for VT100 and similar control character
sequences that control cursor movement, color/font mode,
and other operations that can also be performed via the
existing Console APIs. For more information, see ConsoleConsole
Vir tual Terminal SequencesVir tual Terminal Sequences .

DISABLE_NEWLINE_AUTO_RETURNDISABLE_NEWLINE_AUTO_RETURN 0x0008 When writing with WriteFileWriteFile or WriteConsoleWriteConsole, this adds
an additional state to end-of-line wrapping that can delay
the cursor move and buffer scroll operations.

Normally when ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT is set
and text reaches the end of the line, the cursor will
immediately move to the next line and the contents of the
buffer will scroll up by one line. In contrast with this flag set,
the scroll operation and cursor move is delayed until the
next character arrives. The written character will be printed
in the final position on the line and the cursor will remain
above this character as if
ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT was off, but the next
printable character will be printed as if
ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT is on. No overwrite
will occur. Specifically, the cursor quickly advances down to
the following line, a scroll is performed if necessary, the
character is printed, and the cursor advances one more
position.

The typical usage of this flag is intended in conjunction with
setting ENABLE_VIRTUAL_TERMINAL_PROCESSINGENABLE_VIRTUAL_TERMINAL_PROCESSING to
better emulate a terminal emulator where writing the final
character on the screen (../in the bottom right corner)
without triggering an immediate scroll is the desired
behavior.

VA L UEVA L UE M EA N IN GM EA N IN G

https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365747

ENABLE_LVB_GRID_WORLDWIDEENABLE_LVB_GRID_WORLDWIDE 0x0010 The APIs for writing character attributes including
WriteConsoleOutputWriteConsoleOutput and
WriteConsoleOutputAttributeWriteConsoleOutputAttribute allow the usage of flags
from character attributescharacter attributes to adjust the color of the
foreground and background of text. Additionally, a range of
DBCS flags was specified with the COMMON_LVB prefix.
Historically, these flags only functioned in DBCS code pages
for Chinese, Japanese, and Korean languages.

With exception of the leading byte and trailing byte flags,
the remaining flags describing line drawing and reverse
video (../swap foreground and background colors) can be
useful for other languages to emphasize portions of output.

Setting this console mode flag will allow these attributes to
be used in every code page on every language.

It is off by default to maintain compatibility with known
applications that have historically taken advantage of the
console ignoring these flags on non-CJK machines to store
bits in these fields for their own purposes or by accident.

Note that using the
ENABLE_VIRTUAL_TERMINAL_PROCESSING mode can result
in LVB grid and reverse video flags being set while this flag
is still off if the attached application requests underlining or
inverse video via Console Vir tual Terminal SequencesConsole Vir tual Terminal Sequences .

VA L UEVA L UE M EA N IN GM EA N IN G

Return value

Remarks

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

A console consists of an input buffer and one or more screen buffers. The mode of a console buffer determines

how the console behaves during input or output (I/O) operations. One set of flag constants is used with input

handles, and another set is used with screen buffer (output) handles. Setting the output modes of one screen

buffer does not affect the output modes of other screen buffers.

The ENABLE_LINE_INPUTENABLE_LINE_INPUT and ENABLE_ECHO_INPUTENABLE_ECHO_INPUT modes only affect processes that use ReadFileReadFile or

ReadConsoleReadConsole to read from the console's input buffer. Similarly, the ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT mode

primarily affects ReadFileReadFile and ReadConsoleReadConsole users, except that it also determines whether CTRL+C input is

reported in the input buffer (to be read by the ReadConsoleInputReadConsoleInput function) or is passed to a function defined

by the application.

The ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT and ENABLE_MOUSE_INPUTENABLE_MOUSE_INPUT modes determine whether user interactions

involving window resizing and mouse actions are reported in the input buffer or discarded. These events can

be read by ReadConsoleInputReadConsoleInput, but they are always filtered by ReadFileReadFile and ReadConsoleReadConsole.

The ENABLE_PROCESSED_OUTPUTENABLE_PROCESSED_OUTPUT and ENABLE_WRAP_AT_EOL_OUTPUTENABLE_WRAP_AT_EOL_OUTPUT modes only affect processes

using ReadFileReadFile or ReadConsoleReadConsole and WriteFileWriteFile or WriteConsoleWriteConsole.

To determine the current mode of a console input buffer or a screen buffer, use the GetConsoleModeGetConsoleMode

function.

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

For an example, see Reading Input Buffer Events.

Console Functions

Console Modes

GetConsoleModeGetConsoleMode

HandlerRoutineHandlerRoutine

ReadConsoleReadConsole

ReadConsoleInputReadConsoleInput

ReadFileReadFile

WriteConsoleWriteConsole

WriteFileWriteFile

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

SetConsoleOutputCP function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI SetConsoleOutputCP(
 In UINT wCodePageID
);

Parameters

Return value

Remarks

Requirements

Sets the output code page used by the console associated with the calling process. A console uses its

output code page to translate the character values written by the various output functions into the images

displayed in the console window.

wCodePageID [in]

The identifier of the code page to set. For more information, see Remarks.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

A code page maps 256 character codes to individual characters. Different code pages include different

special characters, typically customized for a language or a group of languages.

If the current font is a fixed-pitch Unicode font, SetConsoleOutputCPSetConsoleOutputCP changes the mapping of the

character values into the glyph set of the font, rather than loading a separate font each time it is called.

This affects how extended characters (ASCII value greater than 127) are displayed in a console window.

However, if the current font is a raster font, SetConsoleOutputCPSetConsoleOutputCP does not affect how extended

characters are displayed.

To find the code pages that are installed or supported by the operating system, use the

EnumSystemCodePages function. The identifiers of the code pages available on the local computer are

also stored in the registry under the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage

However, it is better to use EnumSystemCodePages to enumerate code pages because the registry can

differ in different versions of Windows. To determine whether a particular code page is valid, use the

IsValidCodePage function. To retrieve more information about a code page, including its name, use the

GetCPInfoExGetCPInfoEx function. For a list of available code page identifiers, see Code Page Identifiers.

To determine a console's current output code page, use the GetConsoleOutputCPGetConsoleOutputCP function. To set and

retrieve a console's input code page, use the SetConsoleCPSetConsoleCP and GetConsoleCPGetConsoleCP functions.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsoleoutputcp.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://go.microsoft.com/fwlink/p/?linkid=178051
https://go.microsoft.com/fwlink/p/?linkid=178051
https://go.microsoft.com/fwlink/p/?linkid=178053
https://msdn.microsoft.com/library/windows/desktop/dd318081
https://msdn.microsoft.com/library/windows/desktop/dd317756

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Code Pages

Console Functions

GetConsoleCPGetConsoleCP

GetConsoleOutputCPGetConsoleOutputCP

SetConsoleCPSetConsoleCP

SetConsoleScreenBufferInfoEx function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleScreenBufferInfoEx(
 In HANDLE hConsoleOutput,
 In PCONSOLE_SCREEN_BUFFER_INFOEX lpConsoleScreenBufferInfoEx
);

Parameters

Return value

Remarks

TIPTIP

Requirements

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Sets extended information about the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

lpConsoleScreenBufferInfoEx [in]

A CONSOLE_SCREEN_BUFFER_INFOEXCONSOLE_SCREEN_BUFFER_INFOEX structure that contains the console screen buffer information.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

This API has a partial vir tual terminalvir tual terminal equivalent. Cursor positioning bufferCursor positioning buffer and text attributestext attributes have specific

sequence equivalents. The color table is not configurable, but extended colorsextended colors are available beyond what is normally

available through console functionsconsole functions . Popup attributes have no equivalent as popup menus are the responsibility of the

command-line client application in the vir tual terminalvir tual terminal world. Finally, the size of the window and the full screen status are

considered privileges owned by the user in the vir tual terminalvir tual terminal world and have no equivalent sequence.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolescreenbufferinfoex.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

CONSOLE_SCREEN_BUFFER_INFOEXCONSOLE_SCREEN_BUFFER_INFOEX

GetConsoleScreenBufferInfoExGetConsoleScreenBufferInfoEx

SetConsoleScreenBufferSize function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleScreenBufferSize(
 In HANDLE hConsoleOutput,
 In COORD dwSize
);

Parameters

Return value

Remarks

TIPTIP

Requirements

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Changes the size of the specified console screen buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

dwSize [in]

A COORDCOORD structure that specifies the new size of the console screen buffer, in character rows and columns. The

specified width and height cannot be less than the width and height of the console screen buffer's window. The

specified dimensions also cannot be less than the minimum size allowed by the system. This minimum depends

on the current font size for the console (selected by the user) and the SM_CXMINSM_CXMIN and SM_CYMINSM_CYMIN values

returned by the GetSystemMetr icsGetSystemMetr ics function.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolescreenbuffersize.md
https://msdn.microsoft.com/library/windows/desktop/ms724385
https://msdn.microsoft.com/library/windows/desktop/ms679360

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Input Buffer

COORDCOORD

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

SetConsoleWindowInfoSetConsoleWindowInfo

SetConsoleTextAttribute function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleTextAttribute(
 In HANDLE hConsoleOutput,
 In WORD wAttributes
);

Parameters

Return value

Remarks

TIPTIP

Examples

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Sets the attributes of characters written to the console screen buffer by the WriteFileWriteFile or WriteConsoleWriteConsole function,

or echoed by the ReadFileReadFile or ReadConsoleReadConsole function. This function affects text written after the function call.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

wAttributes [in]

The character attributes.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

To determine the current color attributes of a screen buffer, call the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo function.

This API has a vir tual terminalvir tual terminal equivalent in the text formattingtext formatting sequences. Virtual terminal sequences are

recommended for all new and ongoing development.

For an example, see Using the High-Level Input and Output Functions.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsoletextattribute.md
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/ms679360

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Screen Buffers

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

ReadConsoleReadConsole

ReadFileReadFile

WriteConsoleWriteConsole

WriteFileWriteFile

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

SetConsoleTitle function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleTitle(
 In LPCTSTR lpConsoleTitle
);

Parameters

Return value

Remarks

TIPTIP

Examples

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Sets the title for the current console window.

lpConsoleTitle [in]

The string to be displayed in the title bar of the console window. The total size must be less than 64K.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

When the process terminates, the system restores the original console title.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode con cpmode con cp

select=select= commands, but it is not recommended for new development.

This API has a vir tual terminalvir tual terminal equivalent in the window titlewindow title sequences. Virtual terminal sequences are recommended

for all new and ongoing development.

The following example shows how to retrieve and modify the console title.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsoletitle.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

#include <windows.h>
#include <tchar.h>
#include <conio.h>
#include <strsafe.h>

int main(void)
{
 TCHAR szOldTitle[MAX_PATH];
 TCHAR szNewTitle[MAX_PATH];

 // Save current console title.

 if(GetConsoleTitle(szOldTitle, MAX_PATH))
 {
 // Build new console title string.

 StringCchPrintf(szNewTitle, MAX_PATH, TEXT("TEST: %s"), szOldTitle);

 // Set console title to new title
 if(!SetConsoleTitle(szNewTitle))
 {
 _tprintf(TEXT("SetConsoleTitle failed (%d)\n"), GetLastError());
 return 1;
 }
 else
 {
 _tprintf(TEXT("SetConsoleTitle succeeded.\n"));
 }
 }
 return 0;
}

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names SetConsoleTitleWSetConsoleTitleW (Unicode) and SetConsoleTitleASetConsoleTitleA (ANSI)

See also
Console Functions

GetConsoleOriginalTitleGetConsoleOriginalTitle

GetConsoleTitleGetConsoleTitle

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

SetConsoleWindowInfo function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetConsoleWindowInfo(
 In HANDLE hConsoleOutput,
 In BOOL bAbsolute,
 In const SMALL_RECT *lpConsoleWindow
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Sets the current size and position of a console screen buffer's window.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_READGENERIC_READ access right. For more

information, see Console Buffer Security and Access Rights.

bAbsolute [in]

If this parameter is TRUETRUE, the coordinates specify the new upper-left and lower-right corners of the window. If it

is FALSEFALSE, the coordinates are relative to the current window-corner coordinates.

lpConsoleWindow [in]

A pointer to a SMALL_RECTSMALL_RECT structure that specifies the new upper-left and lower-right corners of the window.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

The function fails if the specified window rectangle extends beyond the boundaries of the console screen buffer.

This means that the TopTop and LeftLeft members of the lpConsoleWindow rectangle (or the calculated top and left

coordinates, if bAbsolute is FALSE) cannot be less than zero. Similarly, the BottomBottom and RightRight members (or the

calculated bottom and right coordinates) cannot be greater than (screen buffer height – 1) and (screen buffer

width – 1), respectively. The function also fails if the RightRight member (or calculated right coordinate) is less than

or equal to the LeftLeft member (or calculated left coordinate) or if the BottomBottom member (or calculated bottom

coordinate) is less than or equal to the TopTop member (or calculated top coordinate).

https://github.com/Microsoft/Console-Docs/blob/master/docs/setconsolewindowinfo.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

For consoles with more than one screen buffer, changing the window location for one screen buffer does not

affect the window locations of the other screen buffers.

To determine the current size and position of a screen buffer's window, use the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

function. This function also returns the maximum size of the window, given the current screen buffer size, the

current font size, and the screen size. The GetLargestConsoleWindowSizeGetLargestConsoleWindowSize function returns the maximum

window size given the current font and screen sizes, but it does not consider the size of the console screen

buffer.

SetConsoleWindowInfoSetConsoleWindowInfo can be used to scroll the contents of the console screen buffer by shifting the position

of the window rectangle without changing its size.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

For an example, see Scrolling a Screen Buffer's Window.

Console Functions

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

GetLargestConsoleWindowSizeGetLargestConsoleWindowSize

ScrollConsoleScreenBufferScrollConsoleScreenBuffer

Scrolling the Screen Buffer

SMALL_RECTSMALL_RECT

SetCurrentConsoleFontEx function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI SetCurrentConsoleFontEx(
 In HANDLE hConsoleOutput,
 In BOOL bMaximumWindow,
 In PCONSOLE_FONT_INFOEX lpConsoleCurrentFontEx
);

Parameters

Return value

Remarks

TIPTIP

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Sets extended information about the current console font.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

bMaximumWindow [in]

If this parameter is TRUETRUE, font information is set for the maximum window size. If this parameter is FALSEFALSE, font

information is set for the current window size.

lpConsoleCurrentFontEx [in]

A pointer to a CONSOLE_FONT_INFOEXCONSOLE_FONT_INFOEX structure that contains the font information.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

To compile an application that uses this function, define _WIN32_WINNT_WIN32_WINNT as 0x0500 or later. For more

information, see Using the Windows Headers.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems where the user is granted full control over this presentation option.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setcurrentconsolefontex.md
https://docs.microsoft.com/en-us/windows/console/console-font-infoex
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa383745

Requirements

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

CONSOLE_FONT_INFOEXCONSOLE_FONT_INFOEX

https://docs.microsoft.com/en-us/windows/console/console-font-infoex

SetStdHandle function
10/29/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI SetStdHandle(
 In DWORD nStdHandle,
 In HANDLE hHandle
);

Parameters

VA L UEVA L UE M EA N IN GM EA N IN G

STD_INPUT_HANDLESTD_INPUT_HANDLE (DWORD) -10 The standard input device. Initially, this is the console input
buffer, CONIN$.

STD_OUTPUT_HANDLESTD_OUTPUT_HANDLE (DWORD) -11 The standard output device. Initially, this is the active console
screen buffer, CONOUT$.

STD_ERROR_HANDLESTD_ERROR_HANDLE (DWORD) -12 The standard error device. Initially, this is the active console
screen buffer, CONOUT$.

Return value

Remarks

Examples

Requirements

Sets the handle for the specified standard device (standard input, standard output, or standard error).

nStdHandle [in]

The standard device for which the handle is to be set. This parameter can be one of the following values.

hHandle [in]

The handle for the standard device.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

The standard handles of a process may have been redirected by a call to SetStdHandleSetStdHandle, in which case

GetStdHandleGetStdHandle will return the redirected handle. If the standard handles have been redirected, you can specify

the CONIN$ value in a call to the CreateFileCreateFile function to get a handle to a console's input buffer. Similarly, you

can specify the CONOUT$ value to get a handle to the console's active screen buffer.

For an example, see Creating a Child Process with Redirected Input and Output.

https://github.com/Microsoft/Console-Docs/blob/master/docs/setstdhandle.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa363858
https://msdn.microsoft.com/library/windows/desktop/ms682499

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ProcessEnv.h (via Winbase.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also
Console Functions

Console Handles

CreateFileCreateFile

GetStdHandleGetStdHandle

https://msdn.microsoft.com/library/windows/desktop/aa363858

WriteConsole function
12/1/2020 • 2 minutes to read • Edit Online

Syntax

BOOL WINAPI WriteConsole(
 In HANDLE hConsoleOutput,
 In const VOID *lpBuffer,
 In DWORD nNumberOfCharsToWrite,
 _Out_opt_ LPDWORD lpNumberOfCharsWritten,
 Reserved LPVOID lpReserved
);

Parameters

Return value

Remarks

Writes a character string to a console screen buffer beginning at the current cursor location.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

lpBuffer [in]

A pointer to a buffer that contains characters to be written to the console screen buffer. This is expected to

be an array of either char for WriteConsoleA or wchar_t for WriteConsoleW .

nNumberOfCharsToWrite [in]

The number of characters to be written. If the total size of the specified number of characters exceeds the

available heap, the function fails with ERROR_NOT_ENOUGH_MEMORYERROR_NOT_ENOUGH_MEMORY.

lpNumberOfCharsWritten [out, optional]

A pointer to a variable that receives the number of characters actually written.

lpReserved Reserved; must be NULLNULL .

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

The WriteConsoleWriteConsole function writes characters to the console screen buffer at the current cursor position.

The cursor position advances as characters are written. The SetConsoleCursorPositionSetConsoleCursorPosition function sets

the current cursor position.

Characters are written using the foreground and background color attributes associated with the console

screen buffer. The SetConsoleTextAttr ibuteSetConsoleTextAttr ibute function changes these colors. To determine the current

color attributes and the current cursor position, use GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo.

All of the input modes that affect the behavior of the WriteFileWriteFile function have the same effect on

WriteConsoleWriteConsole. To retrieve and set the output modes of a console screen buffer, use the

https://github.com/Microsoft/Console-Docs/blob/master/docs/writeconsole.md
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/aa365747

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names WriteConsoleWWriteConsoleW (Unicode) and WriteConsoleAWriteConsoleA (ANSI)

See also

GetConsoleModeGetConsoleMode and SetConsoleModeSetConsoleMode functions.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page,

use the SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp

or mode con cp select=mode con cp select= commands, but it is not recommended for new development.

WriteConsoleWriteConsole fails if it is used with a standard handle that is redirected to a file. If an application

processes multilingual output that can be redirected, determine whether the output handle is a console

handle (one method is to call the GetConsoleModeGetConsoleMode function and check whether it succeeds). If the

handle is a console handle, call WriteConsoleWriteConsole. If the handle is not a console handle, the output is

redirected and you should call WriteFileWriteFile to perform the I/O. Be sure to prefix a Unicode plain text file

with a byte order mark. For more information, see Using Byte Order Marks.

Although an application can use WriteConsoleWriteConsole in ANSI mode to write ANSI characters, consoles do not

support "ANSI escape" or "virtual terminal" sequences unless enabled. See Console Vir tual TerminalConsole Vir tual Terminal

SequencesSequences for more information and for operating system version applicability.

When virtual terminal escape sequences are not enabled, console functions can provide equivalent

functionality. For more information, see SetCursorPosSetCursorPos , SetConsoleTextAttr ibuteSetConsoleTextAttr ibute, and

GetConsoleCursorInfoGetConsoleCursorInfo.

Console Functions

GetConsoleCursorInfoGetConsoleCursorInfo

GetConsoleModeGetConsoleMode

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

Input and Output Methods

ReadConsoleReadConsole

SetConsoleCPSetConsoleCP

SetConsoleCursorPositionSetConsoleCursorPosition

SetConsoleModeSetConsoleMode

https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/dd374101
https://msdn.microsoft.com/library/windows/desktop/ms648394(v=vs.85).aspx

SetConsoleOutputCPSetConsoleOutputCP

SetConsoleTextAttr ibuteSetConsoleTextAttr ibute

SetCursorPosSetCursorPos

WriteFileWriteFile

https://msdn.microsoft.com/library/windows/desktop/ms648394(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/aa365747

WriteConsoleInput function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI WriteConsoleInput(
 In HANDLE hConsoleInput,
 In const INPUT_RECORD *lpBuffer,
 In DWORD nLength,
 Out LPDWORD lpNumberOfEventsWritten
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Writes data directly to the console input buffer.

hConsoleInput [in]

A handle to the console input buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

lpBuffer [in]

A pointer to an array of INPUT_RECORDINPUT_RECORD structures that contain data to be written to the input buffer.

nLength [in]

The number of input records to be written.

lpNumberOfEventsWritten [out]

A pointer to a variable that receives the number of input records actually written.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

WriteConsoleInputWriteConsoleInput places input records into the input buffer behind any pending events in the buffer. The

input buffer grows dynamically, if necessary, to hold as many events as are written.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode conmode con

https://github.com/Microsoft/Console-Docs/blob/master/docs/writeconsoleinput.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names WriteConsoleInputWWriteConsoleInputW (Unicode) and
WriteConsoleInputAWriteConsoleInputA (ANSI)

See also

cp select=cp select= commands, but it is not recommended for new development.

This API is not recommended and does not have a vir tual terminalvir tual terminal equivalent. This decision intentionally aligns the

Windows platform with other operating systems. This operation is considered the wrong-way verbwrong-way verb for this buffer.

Applications remoting via cross-platform utilities and transports like SSH may not work as expected if using this API.

Console Functions

INPUT_RECORDINPUT_RECORD

Low-Level Console Input Functions

MapVir tualKeyMapVir tualKey

PeekConsoleInputPeekConsoleInput

ReadConsoleInputReadConsoleInput

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

VkKeyScanVkKeyScan

https://msdn.microsoft.com/library/windows/desktop/ms646306
https://msdn.microsoft.com/library/windows/desktop/ms646329

WriteConsoleOutput function
10/29/2020 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI WriteConsoleOutput(
 In HANDLE hConsoleOutput,
 In const CHAR_INFO *lpBuffer,
 In COORD dwBufferSize,
 In COORD dwBufferCoord,
 Inout PSMALL_RECT lpWriteRegion
);

Parameters

Return value

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Writes character and color attribute data to a specified rectangular block of character cells in a console screen

buffer. The data to be written is taken from a correspondingly sized rectangular block at a specified location in

the source buffer.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

lpBuffer [in]

The data to be written to the console screen buffer. This pointer is treated as the origin of a two-dimensional

array of CHAR_INFOCHAR_INFO structures whose size is specified by the dwBufferSize parameter.

dwBufferSize [in]

The size of the buffer pointed to by the lpBuffer parameter, in character cells. The XX member of the COORDCOORD

structure is the number of columns; the YY member is the number of rows.

dwBufferCoord [in]

The coordinates of the upper-left cell in the buffer pointed to by the lpBuffer parameter. The XX member of the

COORDCOORD structure is the column, and the YY member is the row.

lpWriteRegion [in, out]

A pointer to a SMALL_RECTSMALL_RECT structure. On input, the structure members specify the upper-left and lower-right

coordinates of the console screen buffer rectangle to write to. On output, the structure members specify the

actual rectangle that was used.

If the function succeeds, the return value is nonzero.

https://github.com/Microsoft/Console-Docs/blob/master/docs/writeconsoleoutput.md
https://docs.microsoft.com/en-us/windows/console/char-info-str

Remarks

TIPTIP

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

WriteConsoleOutputWriteConsoleOutput treats the source buffer and the destination screen buffer as two-dimensional arrays

(columns and rows of character cells). The rectangle pointed to by the lpWriteRegion parameter specifies the

size and location of the block to be written to in the console screen buffer. A rectangle of the same size is located

with its upper-left cell at the coordinates of the dwBufferCoord parameter in the lpBuffer array. Data from the

cells that are in the intersection of this rectangle and the source buffer rectangle (whose dimensions are

specified by the dwBufferSize parameter) is written to the destination rectangle.

Cells in the destination rectangle whose corresponding source location are outside the boundaries of the source

buffer rectangle are left unaffected by the write operation. In other words, these are the cells for which no data is

available to be written.

Before WriteConsoleOutputWriteConsoleOutput returns, it sets the members of lpWriteRegion to the actual screen buffer

rectangle affected by the write operation. This rectangle reflects the cells in the destination rectangle for which

there existed a corresponding cell in the source buffer, because WriteConsoleOutputWriteConsoleOutput clips the dimensions of

the destination rectangle to the boundaries of the console screen buffer.

If the rectangle specified by lpWriteRegion lies completely outside the boundaries of the console screen buffer,

or if the corresponding rectangle is positioned completely outside the boundaries of the source buffer, no data is

written. In this case, the function returns with the members of the structure pointed to by the lpWriteRegion

parameter set such that the RightRight member is less than the LeftLeft, or the BottomBottom member is less than the TopTop. To

determine the size of the console screen buffer, use the GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo function.

WriteConsoleOutputWriteConsoleOutput has no effect on the cursor position.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode conmode con

cp select=cp select= commands, but it is not recommended for new development.

This API has a vir tual terminalvir tual terminal equivalent in the text formattingtext formatting and cursor positioningcursor positioning sequences. Move the

cursor to the location to insert, apply the formatting desired, and write out the text. Virtual terminal sequences are

recommended for all new and ongoing development.

For an example, see Reading and Writing Blocks of Characters and Attributes.

https://msdn.microsoft.com/library/windows/desktop/ms679360

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names WriteConsoleOutputWWriteConsoleOutputW (Unicode) and
WriteConsoleOutputAWriteConsoleOutputA (ANSI)

See also
Console Functions

CHAR_INFOCHAR_INFO

COORDCOORD

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

Low-Level Console Output Functions

ReadConsoleOutputReadConsoleOutput

ReadConsoleOutputAttr ibuteReadConsoleOutputAttr ibute

ReadConsoleOutputCharacterReadConsoleOutputCharacter

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

SMALL_RECTSMALL_RECT

WriteConsoleOutputAttr ibuteWriteConsoleOutputAttr ibute

WriteConsoleOutputCharacterWriteConsoleOutputCharacter

https://docs.microsoft.com/en-us/windows/console/char-info-str

WriteConsoleOutputAttribute function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI WriteConsoleOutputAttribute(
 In HANDLE hConsoleOutput,
 In const WORD *lpAttribute,
 In DWORD nLength,
 In COORD dwWriteCoord,
 Out LPDWORD lpNumberOfAttrsWritten
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Copies a number of character attributes to consecutive cells of a console screen buffer, beginning at a specified

location.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

lpAttribute [in]

The attributes to be used when writing to the console screen buffer. For more information, see Character

Attributes.

nLength [in]

The number of screen buffer character cells to which the attributes will be copied.

dwWriteCoord [in]

A COORDCOORD structure that specifies the character coordinates of the first cell in the console screen buffer to which

the attributes will be written.

lpNumberOfAttrsWritten [out]

A pointer to a variable that receives the number of attributes actually written to the console screen buffer.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

https://github.com/Microsoft/Console-Docs/blob/master/docs/writeconsoleoutputattribute.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

See also

If the number of attributes to be written to extends beyond the end of the specified row in the console screen

buffer, attributes are written to the next row. If the number of attributes to be written to extends beyond the end

of the console screen buffer, the attributes are written up to the end of the console screen buffer.

The character values at the positions written to are not changed.

This API has a vir tual terminalvir tual terminal equivalent in the text formattingtext formatting and cursor positioningcursor positioning sequences. Move the cursor

to the location to insert, apply the formatting desired, and write out text to fill. There is no equivalent to apply color to an

area without also emitting text. This decision intentionally aligns the Windows platform with other operating systems

where the individual client application is expected to remember its own drawn state for further manipulation.

Console Functions

COORDCOORD

Low-Level Console Output Functions

ReadConsoleOutputReadConsoleOutput

ReadConsoleOutputAttr ibuteReadConsoleOutputAttr ibute

ReadConsoleOutputCharacterReadConsoleOutputCharacter

WriteConsoleOutputWriteConsoleOutput

WriteConsoleOutputCharacterWriteConsoleOutputCharacter

WriteConsoleOutputCharacter function
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

BOOL WINAPI WriteConsoleOutputCharacter(
 In HANDLE hConsoleOutput,
 In LPCTSTR lpCharacter,
 In DWORD nLength,
 In COORD dwWriteCoord,
 Out LPDWORD lpNumberOfCharsWritten
);

Parameters

Return value

Remarks

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Copies a number of characters to consecutive cells of a console screen buffer, beginning at a specified location.

hConsoleOutput [in]

A handle to the console screen buffer. The handle must have the GENERIC_WRITEGENERIC_WRITE access right. For more

information, see Console Buffer Security and Access Rights.

lpCharacter [in]

The characters to be written to the console screen buffer.

nLength [in]

The number of characters to be written.

dwWriteCoord [in]

A COORDCOORD structure that specifies the character coordinates of the first cell in the console screen buffer to which

characters will be written.

lpNumberOfCharsWritten [out]

A pointer to a variable that receives the number of characters actually written.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastErrorGetLastError .

If the number of characters to be written to extends beyond the end of the specified row in the console screen

https://github.com/Microsoft/Console-Docs/blob/master/docs/writeconsoleoutputcharacter.md
https://msdn.microsoft.com/library/windows/desktop/ms679360

TIPTIP

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Library Kernel32.lib

DLL Kernel32.dll

Unicode and ANSI names WriteConsoleOutputCharacterWWriteConsoleOutputCharacterW (Unicode) and
WriteConsoleOutputCharacterAWriteConsoleOutputCharacterA (ANSI)

See also

buffer, characters are written to the next row. If the number of characters to be written to extends beyond the end

of the console screen buffer, characters are written up to the end of the console screen buffer.

The attribute values at the positions written to are not changed.

This function uses either Unicode characters or 8-bit characters from the console's current code page. The

console's code page defaults initially to the system's OEM code page. To change the console's code page, use the

SetConsoleCPSetConsoleCP or SetConsoleOutputCPSetConsoleOutputCP functions. Legacy consumers may also use the chcpchcp or mode conmode con

cp select=cp select= commands, but it is not recommended for new development.

This API has a vir tual terminalvir tual terminal equivalent in the text formattingtext formatting and cursor positioningcursor positioning sequences. Move the cursor

to the location to insert, apply the formatting desired, and write out text to fill. There is no equivalent to emit text to an

area without also applying the active color formatting. This decision intentionally aligns the Windows platform with other

operating systems where the individual client application is expected to remember its own drawn state for further

manipulation.

Console Functions

COORDCOORD

Low-Level Console Output Functions

ReadConsoleOutputReadConsoleOutput

ReadConsoleOutputAttr ibuteReadConsoleOutputAttr ibute

ReadConsoleOutputCharacterReadConsoleOutputCharacter

SetConsoleCPSetConsoleCP

SetConsoleOutputCPSetConsoleOutputCP

WriteConsoleOutputWriteConsoleOutput

WriteConsoleOutputAttr ibuteWriteConsoleOutputAttr ibute

Console Structures
10/29/2020 • 2 minutes to read • Edit Online

The following structures are used to access a console.

CHAR_INFOCHAR_INFO

CONSOLE_CURSOR_INFOCONSOLE_CURSOR_INFO

CONSOLE_FONT_INFOCONSOLE_FONT_INFO

CONSOLE_FONT_INFOEXCONSOLE_FONT_INFOEX

CONSOLE_HISTORY_INFOCONSOLE_HISTORY_INFO

CONSOLE_READCONSOLE_CONTROLCONSOLE_READCONSOLE_CONTROL

CONSOLE_SCREEN_BUFFER_INFOCONSOLE_SCREEN_BUFFER_INFO

CONSOLE_SCREEN_BUFFER_INFOEXCONSOLE_SCREEN_BUFFER_INFOEX

CONSOLE_SELECTION_INFOCONSOLE_SELECTION_INFO

COORDCOORD

FOCUS_EVENT_RECORDFOCUS_EVENT_RECORD

INPUT_RECORDINPUT_RECORD

KEY_EVENT_RECORDKEY_EVENT_RECORD

MENU_EVENT_RECORDMENU_EVENT_RECORD

MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD

SMALL_RECTSMALL_RECT

WINDOW_BUFFER_SIZE_RECORDWINDOW_BUFFER_SIZE_RECORD

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-structures.md
https://docs.microsoft.com/en-us/windows/console/char-info-str
https://docs.microsoft.com/en-us/windows/console/console-cursor-info-str
https://docs.microsoft.com/en-us/windows/console/console-font-info-str
https://docs.microsoft.com/en-us/windows/console/console-font-infoex

CONSOLE_HISTORY_INFO structure
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

typedef struct {
 UINT cbSize;
 UINT HistoryBufferSize;
 UINT NumberOfHistoryBuffers;
 DWORD dwFlags;
} CONSOLE_HISTORY_INFO, *PCONSOLE_HISTORY_INFO;

Members

VA L UEVA L UE M EA N IN GM EA N IN G

HISTORY_NO_DUP_FL AGHISTORY_NO_DUP_FL AG 0x1 Duplicate entries will not be stored in the history buffer.

Requirements

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Contains information about the console history.

cbSizecbSize

The size of the structure, in bytes. Set this member to sizeof(CONSOLE_HISTORY_INFO) .

Histor yBufferS izeHistor yBufferS ize

The number of commands kept in each history buffer.

NumberOfHistor yBuffersNumberOfHistor yBuffers

The number of history buffers kept for this console process.

dwFlagsdwFlags

This parameter can be zero or the following value.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-history-info.md

See also
GetConsoleHistor yInfoGetConsoleHistor yInfo

SetConsoleHistor yInfoSetConsoleHistor yInfo

CONSOLE_READCONSOLE_CONTROL structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _CONSOLE_READCONSOLE_CONTROL {
 ULONG nLength;
 ULONG nInitialChars;
 ULONG dwCtrlWakeupMask;
 ULONG dwControlKeyState;
} CONSOLE_READCONSOLE_CONTROL, *PCONSOLE_READCONSOLE_CONTROL;

Members

VA L UEVA L UE M EA N IN GM EA N IN G

CAPSLOCK_ONCAPSLOCK_ON 0x0080 The CAPS LOCK light is on.

ENHANCED_KEYENHANCED_KEY 0x0100 The key is enhanced. See remarks.

LEFT_ALT_PRESSEDLEFT_ALT_PRESSED 0x0002 The left ALT key is pressed.

LEFT_CTRL_PRESSEDLEFT_CTRL_PRESSED 0x0008 The left CTRL key is pressed.

NUMLOCK_ONNUMLOCK_ON 0x0020 The NUM LOCK light is on.

RIGHT_ALT_PRESSEDRIGHT_ALT_PRESSED 0x0001 The right ALT key is pressed.

RIGHT_CTRL_PRESSEDRIGHT_CTRL_PRESSED 0x0004 The right CTRL key is pressed.

SCROLLLOCK_ONSCROLLLOCK_ON 0x0040 The SCROLL LOCK light is on.

Contains information for a console read operation.

nLengthnLength

The size of the structure. Set this member to sizeof(CONSOLE_READCONSOLE_CONTROL) .

nInitialCharsnInitialChars

The number of characters to skip (and thus preserve) before writing newly read input in the buffer passed to the

ReadConsoleReadConsole function. This value must be less than the nNumberOfCharsToRead parameter of the

ReadConsoleReadConsole function.

dwCtr lWakeupMaskdwCtr lWakeupMask

A mask specifying which control characters between 0x00 and 0x1F should be used to signal that the read is

complete. Each bit corresponds to a character with the least significant bit corresponding to 0x00 or NUL and the

most significant bit corresponding to 0x1F or US . Multiple bits (control characters) can be specified.

dwControlKeyStatedwControlKeyState

The state of the control keys. This member can be one or more of the following values.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-readconsole-control.md

SHIFT_PRESSEDSHIFT_PRESSED 0x0010 The SHIFT key is pressed.

VA L UEVA L UE M EA N IN GM EA N IN G

Requirements

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi.h (via WinCon.h, include Windows.h)

See also
ReadConsoleReadConsole

CONSOLE_SELECTION_INFO structure
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

typedef struct _CONSOLE_SELECTION_INFO {
 DWORD dwFlags;
 COORD dwSelectionAnchor;
 SMALL_RECT srSelection;
} CONSOLE_SELECTION_INFO, *PCONSOLE_SELECTION_INFO;

Members

VA L UEVA L UE M EA N IN GM EA N IN G

CONSOLE_MOUSE_DOWNCONSOLE_MOUSE_DOWN 0x0008 Mouse is down. The user is actively adjusting the selection
rectangle with a mouse.

CONSOLE_MOUSE_SELECTIONCONSOLE_MOUSE_SELECTION 0x0004 Selecting with the mouse. If off, the user is operating
conhost.exe mark mode selection with the keyboard.

CONSOLE_NO_SELECTIONCONSOLE_NO_SELECTION 0x0000 No selection.

CONSOLE_SELECTION_IN_PROGRESSCONSOLE_SELECTION_IN_PROGRESS 0x0001 Selection has begun. If a mouse selection, this will typically
not occur without the CONSOLE_SELECTION_NOT_EMPTY flag. If

a keyboard selection, this may occur when mark mode has
been entered but the user is still navigating to the initial
position.

CONSOLE_SELECTION_NOT_EMPTYCONSOLE_SELECTION_NOT_EMPTY 0x0002 Selection rectangle not empty. The payload of
dwSelectionAnchor and srSelection are valid.

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Contains information for a console selection.

dwFlagsdwFlags

The selection indicator. This member can be one or more of the following values.

dwSelectionAnchordwSelectionAnchor

A COORDCOORD structure that specifies the selection anchor, in characters.

srSelectionsrSelection

A SMALL_RECTSMALL_RECT structure that specifies the selection rectangle.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-selection-info-str.md

Requirements

Minimum supported client Windows XP [desktop apps only]

Minimum supported server Windows Server 2003 [desktop apps only]

Header ConsoleApi3.h (via WinCon.h, include Windows.h)

See also
COORDCOORD

GetConsoleSelectionInfoGetConsoleSelectionInfo

SMALL_RECTSMALL_RECT

FOCUS_EVENT_RECORD structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _FOCUS_EVENT_RECORD {
 BOOL bSetFocus;
} FOCUS_EVENT_RECORD;

Members

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header WinConTypes.h (via WinCon.h, include Windows.h)

See also

Describes a focus event in a console INPUT_RECORDINPUT_RECORD structure. These events are used internally and should be

ignored.

bSetFocusbSetFocus

Reserved.

INPUT_RECORDINPUT_RECORD

https://github.com/Microsoft/Console-Docs/blob/master/docs/focus-event-record-str.md

CONSOLE_SCREEN_BUFFER_INFOEX structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _CONSOLE_SCREEN_BUFFER_INFOEX {
 ULONG cbSize;
 COORD dwSize;
 COORD dwCursorPosition;
 WORD wAttributes;
 SMALL_RECT srWindow;
 COORD dwMaximumWindowSize;
 WORD wPopupAttributes;
 BOOL bFullscreenSupported;
 COLORREF ColorTable[16];
} CONSOLE_SCREEN_BUFFER_INFOEX, *PCONSOLE_SCREEN_BUFFER_INFOEX;

Members

Contains extended information about a console screen buffer.

cbSizecbSize

The size of this structure, in bytes.

dwSizedwSize

A COORDCOORD structure that contains the size of the console screen buffer, in character columns and rows.

dwCursorPositiondwCursorPosition

A COORDCOORD structure that contains the column and row coordinates of the cursor in the console screen buffer.

wAttr ibuteswAttr ibutes

The attributes of the characters written to a screen buffer by the WriteFileWriteFile and WriteConsoleWriteConsole functions, or

echoed to a screen buffer by the ReadFileReadFile and ReadConsoleReadConsole functions. For more information, see Character

Attributes.

srWindowsrWindow

A SMALL_RECTSMALL_RECT structure that contains the console screen buffer coordinates of the upper-left and lower-right

corners of the display window.

dwMaximumWindowSizedwMaximumWindowSize

A COORDCOORD structure that contains the maximum size of the console window, in character columns and rows,

given the current screen buffer size and font and the screen size.

wPopupAttr ibuteswPopupAttr ibutes

The fill attribute for console pop-ups.

bFullscreenSuppor tedbFullscreenSuppor ted

If this member is TRUE , full-screen mode is supported; otherwise, it is not. This will always be FALSE for systems

after Windows Vista with the WDDM driver model as true direct VGA access to the monitor is no longer available.

ColorTableColorTable

An array of COLORREFCOLORREF values that describe the console's color settings.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-screen-buffer-infoex.md
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/introduction-to-the-windows-vista-and-later-display-driver-model
https://msdn.microsoft.com/library/windows/desktop/dd183449

Requirements

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

See also
COORDCOORD

GetConsoleScreenBufferInfoExGetConsoleScreenBufferInfoEx

SetConsoleScreenBufferInfoExSetConsoleScreenBufferInfoEx

SMALL_RECTSMALL_RECT

CONSOLE_SCREEN_BUFFER_INFO structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _CONSOLE_SCREEN_BUFFER_INFO {
 COORD dwSize;
 COORD dwCursorPosition;
 WORD wAttributes;
 SMALL_RECT srWindow;
 COORD dwMaximumWindowSize;
} CONSOLE_SCREEN_BUFFER_INFO;

Members

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header ConsoleApi2.h (via WinCon.h, include Windows.h)

Contains information about a console screen buffer.

dwSizedwSize

A COORDCOORD structure that contains the size of the console screen buffer, in character columns and rows.

dwCursorPositiondwCursorPosition

A COORDCOORD structure that contains the column and row coordinates of the cursor in the console screen buffer.

wAttr ibuteswAttr ibutes

The attributes of the characters written to a screen buffer by the WriteFileWriteFile and WriteConsoleWriteConsole functions, or

echoed to a screen buffer by the ReadFileReadFile and ReadConsoleReadConsole functions. For more information, see Character

Attributes.

srWindowsrWindow

A SMALL_RECTSMALL_RECT structure that contains the console screen buffer coordinates of the upper-left and lower-right

corners of the display window.

dwMaximumWindowSizedwMaximumWindowSize

A COORDCOORD structure that contains the maximum size of the console window, in character columns and rows, given

the current screen buffer size and font and the screen size.

For an example, see Scrolling a Screen Buffer's Contents.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-screen-buffer-info-str.md
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://msdn.microsoft.com/library/windows/desktop/aa365467

See also
COORDCOORD

GetConsoleScreenBufferInfoGetConsoleScreenBufferInfo

ReadConsoleReadConsole

ReadFileReadFile

SMALL_RECTSMALL_RECT

WriteConsoleWriteConsole

WriteFileWriteFile

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://msdn.microsoft.com/library/windows/desktop/aa365747

COORD structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _COORD {
 SHORT X;
 SHORT Y;
} COORD, *PCOORD;

Members

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header WinConTypes.h (via WinCon.h, include Windows.h)

See also

Defines the coordinates of a character cell in a console screen buffer. The origin of the coordinate system

(0,0) is at the top, left cell of the buffer.

XX

The horizontal coordinate or column value. The units depend on the function call.

YY

The vertical coordinate or row value. The units depend on the function call.

For an example, see Scrolling a Screen Buffer's Contents.

CONSOLE_FONT_INFOCONSOLE_FONT_INFO

CONSOLE_SCREEN_BUFFER_INFOCONSOLE_SCREEN_BUFFER_INFO

CONSOLE_SELECTION_INFOCONSOLE_SELECTION_INFO

FillConsoleOutputAttr ibuteFillConsoleOutputAttr ibute

FillConsoleOutputCharacterFillConsoleOutputCharacter

GetConsoleFontSizeGetConsoleFontSize

GetLargestConsoleWindowSizeGetLargestConsoleWindowSize

MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD

https://github.com/Microsoft/Console-Docs/blob/master/docs/coord-str.md
https://docs.microsoft.com/en-us/windows/console/console-font-info-str

ReadConsoleOutputReadConsoleOutput

ReadConsoleOutputAttr ibuteReadConsoleOutputAttr ibute

ReadConsoleOutputCharacterReadConsoleOutputCharacter

ScrollConsoleScreenBufferScrollConsoleScreenBuffer

SetConsoleCursorPositionSetConsoleCursorPosition

SetConsoleDisplayModeSetConsoleDisplayMode

SetConsoleScreenBufferS izeSetConsoleScreenBufferS ize

WINDOW_BUFFER_SIZE_RECORDWINDOW_BUFFER_SIZE_RECORD

WriteConsoleOutputWriteConsoleOutput

WriteConsoleOutputAttr ibuteWriteConsoleOutputAttr ibute

WriteConsoleOutputCharacterWriteConsoleOutputCharacter

INPUT_RECORD structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _INPUT_RECORD {
 WORD EventType;
 union {
 KEY_EVENT_RECORD KeyEvent;
 MOUSE_EVENT_RECORD MouseEvent;
 WINDOW_BUFFER_SIZE_RECORD WindowBufferSizeEvent;
 MENU_EVENT_RECORD MenuEvent;
 FOCUS_EVENT_RECORD FocusEvent;
 } Event;
} INPUT_RECORD;

Members

VA L UEVA L UE M EA N IN GM EA N IN G

FOCUS_EVENTFOCUS_EVENT 0x0010 The EventEvent member contains a FOCUS_EVENT_RECORDFOCUS_EVENT_RECORD
structure. These events are used internally and should be
ignored.

KEY_EVENTKEY_EVENT 0x0001 The EventEvent member contains a KEY_EVENT_RECORDKEY_EVENT_RECORD
structure with information about a keyboard event.

MENU_EVENTMENU_EVENT 0x0008 The EventEvent member contains a MENU_EVENT_RECORDMENU_EVENT_RECORD
structure. These events are used internally and should be
ignored.

MOUSE_EVENTMOUSE_EVENT 0x0002 The EventEvent member contains a MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD
structure with information about a mouse movement or
button press event.

WINDOW_BUFFER_SIZE_EVENTWINDOW_BUFFER_SIZE_EVENT 0x0004 The EventEvent member contains a
WINDOW_BUFFER_SIZE_RECORDWINDOW_BUFFER_SIZE_RECORD structure with
information about the new size of the console screen buffer.

Describes an input event in the console input buffer. These records can be read from the input buffer by using

the ReadConsoleInputReadConsoleInput or PeekConsoleInputPeekConsoleInput function, or written to the input buffer by using the

WriteConsoleInputWriteConsoleInput function.

EventTypeEventType

A handle to the type of input event and the event record stored in the EventEvent member.

This member can be one of the following values.

EventEvent

The event information. The format of this member depends on the event type specified by the EventTypeEventType

member.

https://github.com/Microsoft/Console-Docs/blob/master/docs/input-record-str.md
mabidm
Highlight

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header WinConTypes.h (via WinCon.h, include Windows.h)

See also

For an example, see Reading Input Buffer Events.

FOCUS_EVENT_RECORDFOCUS_EVENT_RECORD

KEY_EVENT_RECORDKEY_EVENT_RECORD

MENU_EVENT_RECORDMENU_EVENT_RECORD

MOUSE_EVENT_RECORDMOUSE_EVENT_RECORD

PeekConsoleInputPeekConsoleInput

ReadConsoleInputReadConsoleInput

WriteConsoleInputWriteConsoleInput

KEY_EVENT_RECORD structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _KEY_EVENT_RECORD {
 BOOL bKeyDown;
 WORD wRepeatCount;
 WORD wVirtualKeyCode;
 WORD wVirtualScanCode;
 union {
 WCHAR UnicodeChar;
 CHAR AsciiChar;
 } uChar;
 DWORD dwControlKeyState;
} KEY_EVENT_RECORD;

Members

VA L UEVA L UE M EA N IN GM EA N IN G

CAPSLOCK_ONCAPSLOCK_ON 0x0080 The CAPS LOCK light is on.

ENHANCED_KEYENHANCED_KEY 0x0100 The key is enhanced. See remarks.

Describes a keyboard input event in a console INPUT_RECORDINPUT_RECORD structure.

bKeyDownbKeyDown

If the key is pressed, this member is TRUETRUE. Otherwise, this member is FALSEFALSE (the key is released).

wRepeatCountwRepeatCount

The repeat count, which indicates that a key is being held down. For example, when a key is held down, you might

get five events with this member equal to 1, one event with this member equal to 5, or multiple events with this

member greater than or equal to 1.

wVir tualKeyCodewVir tualKeyCode

A virtual-key code that identifies the given key in a device-independent manner.

wVir tualScanCodewVir tualScanCode

The virtual scan code of the given key that represents the device-dependent value generated by the keyboard

hardware.

uCharuChar

A union of the following members.

UnicodeCharUnicodeChar

Translated Unicode character.

AsciiCharAsciiChar

Translated ASCII character.

dwControlKeyStatedwControlKeyState

The state of the control keys. This member can be one or more of the following values.

https://github.com/Microsoft/Console-Docs/blob/master/docs/key-event-record-str.md
https://msdn.microsoft.com/library/windows/desktop/dd375731(v=vs.85).aspx
mabidm
Highlight

LEFT_ALT_PRESSEDLEFT_ALT_PRESSED 0x0002 The left ALT key is pressed.

LEFT_CTRL_PRESSEDLEFT_CTRL_PRESSED 0x0008 The left CTRL key is pressed.

NUMLOCK_ONNUMLOCK_ON 0x0020 The NUM LOCK light is on.

RIGHT_ALT_PRESSEDRIGHT_ALT_PRESSED 0x0001 The right ALT key is pressed.

RIGHT_CTRL_PRESSEDRIGHT_CTRL_PRESSED 0x0004 The right CTRL key is pressed.

SCROLLLOCK_ONSCROLLLOCK_ON 0x0040 The SCROLL LOCK light is on.

SHIFT_PRESSEDSHIFT_PRESSED 0x0010 The SHIFT key is pressed.

VA L UEVA L UE M EA N IN GM EA N IN G

Remarks

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header WinConTypes.h (via WinCon.h, include Windows.h)

See also

Enhanced keys for the IBM® 101- and 102-key keyboards are the INS, DEL, HOME, END, PAGE UP, PAGE DOWN,

and direction keys in the clusters to the left of the keypad; and the divide (/) and ENTER keys in the keypad.

Keyboard input events are generated when any key, including control keys, is pressed or released. However, the

ALT key when pressed and released without combining with another character, has special meaning to the system

and is not passed through to the application. Also, the CTRL+C key combination is not passed through if the input

handle is in processed mode (ENABLE_PROCESSED_INPUTENABLE_PROCESSED_INPUT).

For an example, see Reading Input Buffer Events.

PeekConsoleInputPeekConsoleInput

ReadConsoleInputReadConsoleInput

WriteConsoleInputWriteConsoleInput

INPUT_RECORDINPUT_RECORD

MENU_EVENT_RECORD structure
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

typedef struct _MENU_EVENT_RECORD {
 UINT dwCommandId;
} MENU_EVENT_RECORD, *PMENU_EVENT_RECORD;

Members

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header WinConTypes.h (via WinCon.h, include Windows.h)

See also

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future. Our

preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform scenarios.

You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal document.

Describes a menu event in a console INPUT_RECORDINPUT_RECORD structure. These events are used internally and should be

ignored.

dwCommandIddwCommandId

Reserved.

INPUT_RECORDINPUT_RECORD

https://github.com/Microsoft/Console-Docs/blob/master/docs/menu-event-record-str.md

MOUSE_EVENT_RECORD structure
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

typedef struct _MOUSE_EVENT_RECORD {
 COORD dwMousePosition;
 DWORD dwButtonState;
 DWORD dwControlKeyState;
 DWORD dwEventFlags;
} MOUSE_EVENT_RECORD;

Members

VA L UEVA L UE M EA N IN GM EA N IN G

FROM_LEFT_1ST_BUTTON_PRESSEDFROM_LEFT_1ST_BUTTON_PRESSED 0x0001 The leftmost mouse button.

FROM_LEFT_2ND_BUTTON_PRESSEDFROM_LEFT_2ND_BUTTON_PRESSED 0x0004 The second button fom the left.

FROM_LEFT_3RD_BUTTON_PRESSEDFROM_LEFT_3RD_BUTTON_PRESSED 0x0008 The third button from the left.

FROM_LEFT_4TH_BUTTON_PRESSEDFROM_LEFT_4TH_BUTTON_PRESSED 0x0010 The fourth button from the left.

RIGHTMOST_BUTTON_PRESSEDRIGHTMOST_BUTTON_PRESSED 0x0002 The rightmost mouse button.

This document describes console platform functionality that is no longer a part of our ecosystem roadmapecosystem roadmap. We do not

recommend using this content in new products, but we will continue to support existing usages for the indefinite future.

Our preferred modern solution focuses on vir tual terminal sequencesvir tual terminal sequences for maximum compatibility in cross-platform

scenarios. You can find more information about this design decision in our classic console vs. vir tual terminalclassic console vs. vir tual terminal

document.

Describes a mouse input event in a console INPUT_RECORDINPUT_RECORD structure.

dwMousePositiondwMousePosition

A COORDCOORD structure that contains the location of the cursor, in terms of the console screen buffer's character-cell

coordinates.

dwButtonStatedwButtonState

The status of the mouse buttons. The least significant bit corresponds to the leftmost mouse button. The next

least significant bit corresponds to the rightmost mouse button. The next bit indicates the next-to-leftmost mouse

button. The bits then correspond left to right to the mouse buttons. A bit is 1 if the button was pressed.

The following constants are defined for the first five mouse buttons.

dwControlKeyStatedwControlKeyState

The state of the control keys. This member can be one or more of the following values.

https://github.com/Microsoft/Console-Docs/blob/master/docs/mouse-event-record-str.md

VA L UEVA L UE M EA N IN GM EA N IN G

CAPSLOCK_ONCAPSLOCK_ON 0x0080 The CAPS LOCK light is on.

ENHANCED_KEYENHANCED_KEY 0x0100 The key is enhanced. See remarks.

LEFT_ALT_PRESSEDLEFT_ALT_PRESSED 0x0002 The left ALT key is pressed.

LEFT_CTRL_PRESSEDLEFT_CTRL_PRESSED 0x0008 The left CTRL key is pressed.

NUMLOCK_ONNUMLOCK_ON 0x0020 The NUM LOCK light is on.

RIGHT_ALT_PRESSEDRIGHT_ALT_PRESSED 0x0001 The right ALT key is pressed.

RIGHT_CTRL_PRESSEDRIGHT_CTRL_PRESSED 0x0004 The right CTRL key is pressed.

SCROLLLOCK_ONSCROLLLOCK_ON 0x0040 The SCROLL LOCK light is on.

SHIFT_PRESSEDSHIFT_PRESSED 0x0010 The SHIFT key is pressed.

VA L UEVA L UE M EA N IN GM EA N IN G

DOUBLE_CLICKDOUBLE_CLICK 0x0002 The second click (button press) of a double-click occurred.
The first click is returned as a regular button-press event.

MOUSE_HWHEELEDMOUSE_HWHEELED 0x0008 The horizontal mouse wheel was moved.

If the high word of the dwButtonStatedwButtonState member contains a
positive value, the wheel was rotated to the right. Otherwise,
the wheel was rotated to the left.

MOUSE_MOVEDMOUSE_MOVED 0x0001 A change in mouse position occurred.

MOUSE_WHEELEDMOUSE_WHEELED 0x0004 The vertical mouse wheel was moved.

If the high word of the dwButtonStatedwButtonState member contains a
positive value, the wheel was rotated forward, away from the
user. Otherwise, the wheel was rotated backward, toward the
user.

Remarks

Examples

dwEventFlagsdwEventFlags

The type of mouse event. If this value is zero, it indicates a mouse button being pressed or released. Otherwise,

this member is one of the following values.

Mouse events are placed in the input buffer when the console is in mouse mode (ENABLE_MOUSE_INPUTENABLE_MOUSE_INPUT).

Mouse events are generated whenever the user moves the mouse, or presses or releases one of the mouse

buttons. Mouse events are placed in a console's input buffer only when the console group has the keyboard focus

and the cursor is within the borders of the console's window.

For an example, see Reading Input Buffer Events.

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header WinConTypes.h (via WinCon.h, include Windows.h)

See also
COORDCOORD

INPUT_RECORDINPUT_RECORD

PeekConsoleInputPeekConsoleInput

ReadConsoleInputReadConsoleInput

WriteConsoleInputWriteConsoleInput

SMALL_RECT structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _SMALL_RECT {
 SHORT Left;
 SHORT Top;
 SHORT Right;
 SHORT Bottom;
} SMALL_RECT;

Members

Remarks

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header WinConTypes.h (via WinCon.h, include Windows.h)

See also

Defines the coordinates of the upper left and lower right corners of a rectangle.

LeftLeft

The x-coordinate of the upper left corner of the rectangle.

TopTop

The y-coordinate of the upper left corner of the rectangle.

RightRight

The x-coordinate of the lower right corner of the rectangle.

BottomBottom

The y-coordinate of the lower right corner of the rectangle.

This structure is used by console functions to specify rectangular areas of console screen buffers, where the

coordinates specify the rows and columns of screen-buffer character cells.

For an example, see Scrolling a Screen Buffer's Contents.

RECTRECT

https://github.com/Microsoft/Console-Docs/blob/master/docs/small-rect-str.md
https://msdn.microsoft.com/library/windows/desktop/dd162897

RECTLRECTL

https://msdn.microsoft.com/library/windows/desktop/dd162907

WINDOW_BUFFER_SIZE_RECORD structure
10/29/2020 • 2 minutes to read • Edit Online

Syntax

typedef struct _WINDOW_BUFFER_SIZE_RECORD {
 COORD dwSize;
} WINDOW_BUFFER_SIZE_RECORD;

Members

Remarks

Examples

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header WinConTypes.h (via WinCon.h, include Windows.h)

See also

Describes a change in the size of the console screen buffer.

dwSizedwSize

A COORDCOORD structure that contains the size of the console screen buffer, in character cell columns and rows.

Buffer size events are placed in the input buffer when the console is in window-aware mode

(ENABLE_WINDOW_INPUTENABLE_WINDOW_INPUT).

For an example, see Reading Input Buffer Events.

COORDCOORD

INPUT_RECORDINPUT_RECORD

ReadConsoleInputReadConsoleInput

https://github.com/Microsoft/Console-Docs/blob/master/docs/window-buffer-size-record-str.md

Console WinEvents
10/29/2020 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

WARNINGWARNING

C O N STA N T / VA L UEC O N STA N T / VA L UE DESC RIP T IO NDESC RIP T IO N

EVENT_CONSOLE_CARETEVENT_CONSOLE_CARET 0x4001 The console caret has moved. The idObject parameter is one
or more of the following values:
CONSOLE_CARET_SELECTIONCONSOLE_CARET_SELECTION or
CONSOLE_CARET_VISIBLECONSOLE_CARET_VISIBLE. The idChild parameter is a
COORDCOORD structure that specifies the cursor's current position.

EVENT_CONSOLE_END_APPLICATIONEVENT_CONSOLE_END_APPLICATION 0x4007 A console process has exited. The idObject parameter contains
the process identifier of the terminated process.

EVENT_CONSOLE_L AYOUTEVENT_CONSOLE_L AYOUT 0x4005 The console layout has changed.

EVENT_CONSOLE_START_APPLICATIONEVENT_CONSOLE_START_APPLICATION 0x4006 A new console process has started. The idObject parameter
contains the process identifier of the newly created process. If
the application is a 16-bit application, the idChild parameter is
CONSOLE_APPLICATION_16BITCONSOLE_APPLICATION_16BIT and idObject is the
process identifier of the NTVDM session associated with the
console.

EVENT_CONSOLE_UPDATE_REGIONEVENT_CONSOLE_UPDATE_REGION 0x4002 More than one character has changed. The idObject
parameter is a COORDCOORD structure that specifies the start of
the changed region. The idChild parameter is a COORDCOORD
structure that specifies the end of the changed region.

EVENT_CONSOLE_UPDATE_SCROLLEVENT_CONSOLE_UPDATE_SCROLL 0x4004 The console has scrolled. The idObject parameter is the
horizontal distance the console has scrolled. The idChild
parameter is the vertical distance the console has scrolled.

EVENT_CONSOLE_UPDATE_SIMPLEEVENT_CONSOLE_UPDATE_SIMPLE 0x4003 A single character has changed. The idObject parameter is a
COORDCOORD structure that specifies the character that has
changed. The idChild parameter specifies the character in the
low word and the character attributescharacter attributes in the high word.

WinEvents are part of the legacy Microsoft Active AccessibilityMicrosoft Active Accessibility framework. Development using these events is strongly

discouraged in favor of the Microsoft UI AutomationMicrosoft UI Automation framework which provides a more robust and comprehensive suite

of interfaces for accessibility and automation applications to interact with the console.

Registering for these events is a global activity and will significantly impact performance of all command-line applications

running on a system at the same time, including services and background utilities. The Microsoft UI AutomationMicrosoft UI Automation

framework is console session specific and overcomes this limitation.

The following event constants are used in the event parameter of the WinEventProc callback function. For more

information, see WinEvents.

https://github.com/Microsoft/Console-Docs/blob/master/docs/console-winevents.md
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32
https://msdn.microsoft.com/library/windows/desktop/dd373885(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/dd373889

Requirements

Minimum supported client Windows 2000 Professional [desktop apps only]

Minimum supported server Windows 2000 Server [desktop apps only]

Header Winuser.h

	Cover Page
	Home
	Ecosystem Roadmap
	Definitions
	Console APIs vs. Virtual Terminal

	About Character Mode Applications
	Input And Output Methods
	Console Code Pages
	Console Control Handlers
	Console Aliases
	Console Buffer Security and Access Rights
	Console Application Issues

	About Consoles
	Creation of a Console
	Attaching to a Console
	Closing a Console
	Console Handles
	Console Input Buffer
	Console Screen Buffers
	Console Modes
	Window And Screen Buffer Size
	Console Selection
	About Legacy Console Mode
	About Pseudoconsoles

	Console Developer's guide & API Reference
	Using The Console API
	High Level Console Input And Output Functions
	Using The High Level Input And Output Functions
	High Level Console Modes
	High Level Console I/O
	Low Level Console Input Functions
	Low Level Console Output Functions
	Low Level Console I/O
	Low Level Console Modes
	Reading And Writing Blocks Of Characters And Attributes
	Reading Input Buffer Events
	Clearing the screen
	Scrolling a Screen Buffer
	Scrolling a Screen Buffer's Contents
	Scrolling a Screen Buffer's Window
	Ctrl C And Ctrl Break Signals
	Ctrl Close Signal
	Registering a Control Handler Function
	Console Virtual Terminal Sequences
	Creating a Pseudoconsole Session

	Console API Functions
	AddConsoleAlias
	AllocConsole
	AttachConsole
	ClosePseudoConsole
	CreateConsoleScreenBuffer
	CreatePseudoConsole
	FillConsoleOutputAttribute
	FillConsoleOutputCharacter
	FlushConsoleInputBuffer
	FreeConsole
	GenerateConsoleCtrlEvent
	GetConsoleAlias
	GetConsoleAliases
	GetConsoleAliasesLength
	GetConsoleAliasExes
	GetConsoleAliasExesLength
	GetConsoleCP
	GetConsoleCursorInfo
	GetConsoleDisplayMode
	GetConsoleFontSize
	GetConsoleHistoryInfo
	GetConsoleMode
	GetConsoleOriginalTitle
	GetConsoleOutputCP
	GetConsoleProcessList
	GetConsoleScreenBufferInfo
	GetConsoleScreenBufferInfoEx
	GetConsoleSelectionInfo
	GetConsoleTitle
	GetConsoleWindow
	GetCurrentConsoleFont
	GetCurrentConsoleFontEx
	GetLargestConsoleWindowSize
	GetNumberOfConsoleInputEvents
	GetNumberOfConsoleMouseButtons
	GetStdHandle
	HandlerRoutine
	PeekConsoleInput
	ReadConsole
	ReadConsoleInput
	ReadConsoleOutput
	ReadConsoleOutputAttribute
	ReadConsoleOutputCharacter
	ResizePseudoConsole
	ScrollConsoleScreenBuffer
	SetConsoleActiveScreenBuffer
	SetConsoleCP
	SetConsoleCtrlHandler
	SetConsoleCursorInfo
	SetConsoleCursorPosition
	SetConsoleDisplayMode
	SetConsoleHistoryInfo
	SetConsoleMode
	SetConsoleOutputCP
	SetConsoleScreenBufferInfoEx
	SetConsoleScreenBufferSize
	SetConsoleTextAttribute
	SetConsoleTitle
	SetConsoleWindowInfo
	SetCurrentConsoleFontEx
	SetStdHandle
	WriteConsole
	WriteConsoleInput
	WriteConsoleOutput
	WriteConsoleOutputAttribute
	WriteConsoleOutputCharacter

	Console API Structures
	CONSOLE_HISTORY_INFO structure
	CONSOLE_READCONSOLE_CONTROL structure
	CONSOLE_SELECTION_INFO Structure
	FOCUS_EVENT_RECORD structure
	CONSOLE_SCREEN_BUFFER_INFOEX structure
	CONSOLE_SCREEN_BUFFER_INFO structure
	COORD structure
	INPUT_RECORD structure
	KEY_EVENT_RECORD structure
	MENU_EVENT_RECORD structure
	MOUSE_EVENT_RECORD structure
	SMALL_RECT structure
	WINDOW_BUFFER_SIZE_RECORD structure

	Console API Winevents

